EFFECT OF LED RADIATION ON BIOFILMS OF OPPORTUNISTIC MICROORGANISMS
DOI:
https://doi.org/10.32782/1998-6475.2024.56.38-42Keywords:
low-intensity radiation, opportunistic microorganisms, biofilmsAbstract
The ability to form biofilms is considered as one of the key virulence factors of microorganisms. Studying the effect of physical factors, in particular, low-intensity radiation on microbial biofilms is important in view of the development of combined approaches to the therapy of pathological processes caused by infectious agents. The effect of LED radiation of the red-infrared spectrum on biofilm formation and formed biofilms of some opportunistic microorganisms was studied. It has been proven that irradiation of the studied microorganisms with LED radiation significantly increases their ability to form biofilms. However, no significant effect of radiation on already formed biofilms was noted. The obtained data confirm the dose-dependent nature of the effect of low-intensity radiation on the biological properties of microorganisms, as well as the significantly higher resistance of microbial biofilms to both chemical and physical factors, compared to planktonic forms.
References
AZEREDO, J., AZEVEDO, N. F., BRIANDET, R., CERCA, N., COENYE, T., COSTA, A. R., ... & STERNBERG, C. (2017) Critical review on biofilm methods. Critical reviews in microbiology, 43 (3), 313–351. DOI: https://doi.org/10.1080/1040841X.2016.1208146.
BJARNSHOLT, T., BUHLIN, K., DUFRÊNE, Y. F., GOMELSKY, M., MORONI, A., RAMSTEDT, M., RUMBAUGH K. P., SCHULTE T., SUN L., ÅKERLUND B. & RÖMLING, U. (2018) Biofilm formation–what we can learn from recent developments. Journal of internal medicine, 284 (4), 332–345. DOI: https://doi.org/10.1111/joim.12782.
COSTERTON, J. W., STEWART, P. S., & GREENBERG, E. P. (1999) Bacterial biofilms: a common cause of persistent infections. Science, 284 (5418), 1318–1322. DOI: 10.1126/science.284.5418.13.
DE SOUZA DA FONSECA, A., DA SILVA SERGIO, L. P., MENCALHA, A. L., & DE PAOLI, F. (2021) Low-power lasers on bacteria: stimulation, inhibition, or effectless? Lasers in Medical Science, 36, 1791–1805. DOI: https://doi.org/10.1007/s10103-021-03258-5.
DJORDJEVIC D, WIEDMANN M, MCLANDSBOROUGH LA. (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Applied and Environmental Microbiology 68 (6), 2950–2958. DOI: https://doi.org/10.1128/AEM.68.6.2950-2958.2002.
HOFFMAN, L.R., D'ARGENIO, D.A., MACCOSS, M.J., ZHANG, Z., JONES, R.A., & MILLER, S.I. (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436 (7054), 1171–1175. DOI: https://doi.org/10.1038/nature03912.
KOO, H., ALLAN, R.N., HOWLIN, R.P., STOODLEY, P., & HALL-STOODLEY, L. (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology, 15 (12), 740–755. DOI: https://doi.org/10.1038/nrmicro.2017.99.
MUSSTTAF, R.A., JENKINS, D.F., & JHA, A.N. (2019) Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. International Journal of Rradiation Biology, 95 (2), 120–143. DOI: https://doi.org/10.1080/09553002.2019.1524944.
PANTYO, V.V., DANKO, E.M., PANTYO, V.I., & KOVAL, G.M. (2023) Protymikrobna diia nyzkointensyvnoho lazernoho vyprominiuvannia ta metylenovoho synoho na deiaki umovno-patohenni mikroorhanizmy. Intermedical journal, 84–88 (in Ukrainian). https://doi.org/10.32782/2786-7684/2023-3-17.
PANTYO, V.V., KOVAL, G.M., DANKO, E.M., & PANTYO, V.I. (2020). Complex impact of polarized and non-polarized low intense light and methylene blue on growth rate of some opportunistic microorganisms. Regulatory Mechanisms in Biosystems, 11 (4), 520–523. DOI: https://doi.org/10.15421/022079.
PANTO, V.V., PANTO, V.I., & DANKO, E.M. (2018) Protymikrobna diia svitlodiodnoho vyprominiuvannia na zbudnykiv oportunistychnykh infektsii. Visnyk Odeskoho natsionalnoho universytetu. Biolohiia, 23 (1 (42), 69–77. https://doi.org/10.18524/2077-1746.2018.1(42).118457.
RATHER, M.A., GUPTA, K., & MANDAL, M. (2021) Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology, 52, 1701–1718. https://doi.org/10.1007/s42770-021-00624-x.
ROOS, C., SANTOS, J.N., GUIMARÃES, O.R., GELLER, M., PAOLI, F., & FONSECA, A.S. (2013) The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA. Laser Physics, 23 (7), 075602. https://doi.org/10.1088/1054-660X/23/7/075602.
SANTOS, A. L. S. D., GALDINO, A. C. M., MELLO, T. P. D., RAMOS, L. D. S., BRANQUINHA, M. H., BOLOGNESE, A. M., ... & ROUDBARY, M. (2018) What are the advantages of living in a community? A microbial biofilm perspective!. Memórias do Instituto Oswaldo Cruz, 113 (9), e180212. https://doi.org/10.1590/0074-02760180212.
SKOURA E., BOHÁČ P., BARLOG M., PÁLKOVÁ H., MAUTNER A., BUGYNA L., BUJDÁKOVÁ H., BUJDÁK J. (2023) Structure, photoactivity, and antimicrobial properties of phloxine B / poly(caprolactone) nanocomposite thin films. Applied Clay Science, 242, 107037. https://doi.org/10.1016/j.clay.2023.107037.