INTRODUCTION OF ALTERNATIVE METHODS OF TESTING COSMETIC PRODUCTS IN UKRAINE: OPPORTUNITIES AND CHALLENGES OF TODAY
DOI:
https://doi.org/10.32782/2077-6594.4.1.2021.247000Keywords:
cosmetic products, directive, toxicity, alternative methodsAbstract
Purpose. Analyze existing alternative methods of testing cosmetic products and assess the possibilities of their use in Ukraine.
Materials and methods. In the course of the work, publications of domestic and foreign publications and guidelines of international organizations, which are used for testing cosmetic products, were analyzed.
Results. On the basis of data analysis, alternative methods and current guidelines of international organizations for testing cosmetic products were evaluated. The problematic issues that require solutions for the introduction in Ukraine of approaches to testing cosmetic products without the use of animals have been identified.
Conclusions. The introduction of alternative methods for assessing the toxicity of cosmetic products is a challenge both for Ukraine and other countries of the world. This is primarily due to the lack of evaluation protocols for all toxicological endpoints and cosmetic formulations containing plant raw materials and nanomaterials. For Ukraine, the issues of approval of alternative methods, testing strategies and the limited number of specialists with experience with alternative models and knowledge of in vitro methods remains open.
References
Vinardell MP, Montserrat M. Alternative Methods to Animal Testing for the Safety Evaluation of Cosmetic Ingredients: An Overview.Cosmetics. 2017; 4 (30): 2-14. doi:10.3390/cosmetics4030030.
Kojima H, Seidle T, Spielmann Н.Alternatives to Animal Testing: proceedings of Asian Congress. 2016 Springer Singapore; 2019. 130 p. doi:10.1007/978-981-13-2447-5.
Trakhtenberg ІМ, KovalenkoVM, KoksharevaNV ta in. Alternatyvni metody i test-systemy. Likarska toksykolohiia [Alternative Methods and Test-Systems. Medical Toxicology] Kyiv: Izd-vo Avitsenna; 2008. 272 p.
Dmytrukha NM. «Cell culture as an in vitro model in toxicological studies». Fundamentalni doslіdgennya. 2013; 3: 50-5.
Robinson V. Finding alternatives: an overview of the 3Rs and the use of animals in research. School Science Review. 2005; 87 (319): 1-4.
What in the mandate of EURL ECVAM. https://ec.europa.eu/jrc/en/eurl/ecvam/faq/general.
Almeida A, Sarmento B, Rodrigues F. Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients. Int J Pharm. 2017; 519 (1-2): 178-85. doi:10.1016/j.ijpharm.2017.01.024.
Hwang J, Jeong H, Lee N, Hur S, Lee N, Han J et al. Ex vivo live full-thickness porcine skin model as a versatile in vitro testing method for skin barrier research. Int J Mol Sci. 2021; 22 (2): 1-16. doi:10.3390/ijms22020657.
Han J, Kim S, Lee S, Kim J, Chang Y, Jeong T et al. Me-too validation study for in vitro skin irritation test with a reconstructed human epidermis model, KeraSkinTM for OECD test guideline 439. Regul Toxicol Pharmacol. 2020; 117: 1-14. doi:10.1016/j.yrtph.2020.104725.
Groeber F, Schober L, Schmid F, Traube A, Kolbus-Hernandez S, Daton K, et al. Catch-up validation study of an in vitro skin irritation test method based on an open source reconstructed epidermis (phase II). Toxicol in Vitro. 2016; 36: 254-61. doi:10.1016/j.tiv.2016.07.008.
Kharchenko TF, Levytska VM, Kharchenko OA, Holovashchenko GV, Khomak CО, Isaieva CC. «Justification of an alternative method for determination of toxicity of perfume and and beauty products by in vitro method on a short term suspension cell culture – cattle spermatozoa (literature review)». Suchasni problemy toxicologii, kharchovoi ta khimichnoi bezpeky. 2018; 2-3: 92-5.
Tapking С, Popp D, Branski L. Pig Model to Test Tissue-Engineered Skin. Methods Mol. Biol. 2019; 1993: 239-49. doi:10.1007/978-1-4939-9473-1_19.
Géniès C, Jamin E, Debrauwer L, ZalkoD, Person EN, Eilstein J, et al. Comparison of the metabolism of chemicals in human and pig skin explants. J Appl Toxicol. 2019; 39 (2): 385-397. doi:10.1002/jat.3730.
Oesch F, Fabian E, Guth K, Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol. 2014; 88 (12): 2135-90. doi:10.1007/s00204-014-1382-8.
Oesch F, Fabian E, Landsiedel R. Xenobiotica-Metabolizing Enzymes in the Skin of Rat, Mouse, Pig, Guinea Pig, Man, and in Human Skin Models. Arch Toxicol. 2018; 92 (8): 2411-56. doi:10.1007/s00204-018-2232-x.
Qin O, Cheng Y, Hu W, Zhou H, Tan Y, Guo S et al. Patch test in Chinese in Shanghai with cosmetic allergy to cosmetic series and products. J Cosmet Dermatol. 2020; 19 (8): 2086-92. doi:10.1111/jocd.13249.
Garcia N, Doucet O, Bayer M, Fouchard D, Zastrow L, Marty JP, et al. Characterization of the barrier function in a reconstituted human epidermis cultivated in chemically defined medium. Int J Cosmet Sci. 2002; 24 (1): 25-34. doi:10.1046/j.0412-5463.2001.00112.x.
Netzlaff F, Lehr C, Wertz P, Schaefer U. The human epidermis models EpiSkin®, SkinEthic® and EpiDerm®: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm. 2005; 60 (2): 167-78. doi:10.1016/j.ejpb.2005.03.004.
Jirova D, Liebsch M, Basketter D, Spiller E, Kejlova K, Bendova H, et al. Comparison of human skin irritation and photo-irritation patch test data with cellular in vitro assays and animal in vivo data. Japanese Society for Alternatives to Animal Experiments. 2008; 14: 359-65.
Lotz C, Schmid FF, Rossi A, Kurdyn S, Kampik D, Wever B, et al. Alternative methods for the replacement of eye irritation testing. Altex. 2016; 33 (1): 55-67. doi:10.14573/altex.1508241.
Barroso J, Pfannenbecker U, Adriaens E, Alépée N, Cluzel M, Smedt A, et al. Cosmetics Europe compilation of historical serious eye damage/eye irritation in vivo data analysed by drivers of classification to support the selection of chemicals for development and evaluation of alternative methods/strategies: the Draize eye test Ref. Arch Toxicol. 2017; 91 (2): 521-47. doi:10.1007/s00204-016-1679-x.
Organisation for Economic Co-operation and Development. Guidance document No 263 on integrated approaches to testing and assessment (IATA) for serious eye damage and eye irritation. 2019.
Kimura Y, Suto S, Tatsuka M. Evaluation of carcinogenic/co-carcinogenic activity of chikusaku-eki, a bamboo charcoal by-product used as a folk remedy, in BALB/c 3T3 cells. Biol Pharm Bull. 2002; 25 (8): 1026-9. doi:10.1248/bpb.25.1026.
Perocco P, Paolini M, Mazzullo M, Biagi GL, Cantelli-Forti G. β-Carotene as enhancer of cell transforming activity of powerful carcinogens and cigarette-smoke condensate on BALB/c 3T3 cells in vitro. Mutat Res. 1999; 440 (1): 83-90. doi:10.1016/S1383-5718(99)00009-1.
Tanaka N, Bohnenberger S, Kunkelmann T, Munaro B, Ponti J, Poth A, et al. Prevalidation study of the BALB/c 3T3 cell transformation assay for assessment of carcinogenic potential of chemicals. Mutat Res. 2012; 744 (1): 20-9. doi:10.1016/j.mrgentox.2011.12.008.
Poburski D, Thierbach R. Improvement of the BALB/c-3T3 cell transformation assay: A tool for investigating cancer mechanisms and therapies. Scientific Reports.2016; 6: 1-8.doi:10.1038/srep32966.
Choo W, Moon B, Song S, Oh S. Morphological transformation induced by silver nanoparticles in a Balb/c 3T3 A31-1-1 mouse cell model to evaluate in vitro carcinogenic potential. Environ Health and Toxicol. 2017; 32: 1-8. doi:10.5620/eht.e2017016.
Mauthe R, Gibson D, Bunch R, Custer L. The Syrian hamster embryo (SHE) cell transformation assay: Review of the methods and results. Toxicol Pathol. 2001; 29: 138-46.doi:10.1080/019262301753178546.
Scientific Committee on Consumer Safety. The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 10th revision. 2016.
Hojerová J, Peráčková Z, Beránková M. Margin of safety for two UV filters estimated by invitro permeation studies mimicking consumer habits: Effects of skin shaving and sunscreen reapplication. Food Chem Toxicol. 2017; 103:66-78.doi:10.1016/j.fct.2017.02.013.
The state of safety science. Thomas Platzek, Germany.https://ec.europa.eu/health/scientific_committees/ consumer_safety/docs/epaa.pdf.
Ates G, Steinmetz F, Doktorova T, Madden J, Rogiers V. Linking existing in vitro dermal absorption data to physicochemical properties: Contribution to the design of a weight-of-evidence approach for the safety evaluation of cosmetic ingredients with low dermal bioavailability. Regul Toxicol and Pharmacol. 2016; 76:74-8. doi:10.1016/j.yrtph.2016.01.015.
Corazza M, Borghi A, Lauriola M, Virgili A. Use of topical herbal remedies and cosmetics: A questionnaire-based investigation in dermatology out-patients. J Eur Acad Dermatol and Venereol. 2009; 23 (11):1298-1303. doi:10.1111/j.1468-3083.2009.03314.x.
Valle A. Current methodologies in assessing toxicity of natural products. Int J Phytocos Nat Ingred. 2018;5 (1): 1-6. doi:10.15171/ijpni.2018.03.
Fytianos G, Rahdar A, Kyzas G. Nanomaterials in cosmetics: Recent updates. Nanomaterials. 2020; 10 (5): 1-16. doi:10.3390/nano10050979.
Chen R, Chen Y, Liao M, Lee Y, Chen Z, Yan S, et al. The current understanding of autophagy in nanomaterial toxicity and its implementation in safety assessment-related alternative testing strategies. Int J Mol Sci. 2020; 21 (7): 2-24. doi:10.3390/ijms21072387.
Shatkin J, Ong K. Alternative Testing Strategies for Nanomaterials: State of the Science and Considerations for Risk Analysis. Risk Anal. 2016; 36 (8): 1564-80. doi:10.1111/risa.12642.
Organization for Economic Cooperation and Development. OECD Guidelines for the Testing of Chemicals – Guideline 439:In vitro skin irritation: Reconstructed Human Epidermis test method. (2015).
Report: These Countries Have Banned Cosmetics Animal Testing. https://www.skincarewatchdog.com/report-these-countries-have-banned-cosmetics-animal-testing/.
Government action needed to curb explosion in “cruelest of cruel” animal tests in South Korea, says Humane Society International. https://www.hsi.org/news-media/korea-lab-animal-statistics-2018/.