THE USE OF LOW-POWER VISIBLE SPECTRUM RADIATION AS A NON-MEDICAMENTOUS THERAPEUTIC MEAN (LITERATURE REVIEW)
DOI:
https://doi.org/10.32782/2786-7684/2025-4-18Keywords:
antibiotic resistance, low-power laser radiation, LED radiation, antimicrobial photodynamic therapy, complex therapy, phototherapy, antimicrobial effectAbstract
Introduction. The development of antimicrobial resistance is a natural process and is associated with the ability of microorganisms to neutralize antibacterial drugs, remove them from the cell, modify antibiotic targets, form biofilms, etc. Resistant microorganisms cause increased morbidity and mortality, and significant economic losses. As a result, the urgent task of scientists and practicing physicians is to study the mechanisms of influence of non-drug agents on the microbial cell with the aim of their wider implementation in clinical practice. The purpose of the work is to analyze scientific literature sources on the use of polarized and non-polarized, as well as coherent and non- coherent low-power visible spectrum radiation in the complex therapy of diseases of infectious and non-infectious etiology. Materials and methods. A study and analysis of literature sources was conducted using the PubMed, Google Scholar, and Research Gate search engines. Search keywords: “phototherapy”, “photodynamic therapy”, “antibiotic resistance”, “low-intensity radiation in medicine”. The search depth was 15 years. Results and discussion. Since the discovery of optical quantum devices that generate laser, LED, polarized polychromatic and other types of radiation, a completely new stage in the development of phototherapy has begun. Due to the presence of a number of advantages and the almost complete absence of contraindications, the use of low-intensity radiation of the visible and near-infrared spectrum has found wide application in almost all branches of medicine for the complex therapy of a wide range of pathologies of both infectious and non-infectious etiology. Despite the large number of scientific publications on the mechanism of interaction of low-intensity radiation with biological tissues, many questions, in particular the direct effect of low-power radiation on microbial cells, remain opened. Conclusions. Due to the continuous and irreversible development of antibiotic resistance of microorganisms, the use of non-medicamentous treatments is considered as a supplement and, in some cases, as an alternative to traditional antibiotic therapy. The versatility of the effects of phototherapy and photodynamic therapy, the proven positive effect on biological objects of different levels of organization make this technique one of the most promising therapeutic directions.
References
Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. Antimicrobial Resistance. JAMA. 2016;316(11):1193–1204. doi: 10.1001/jama.2016.11764
Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance. 2019;12:3903–3910. doi: https://doi.org/10.2147/IDR.S234610
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of infection and public health. 2021;14(12):1750-1766. doi: https://doi.org/10.1016/j.jiph.2021.10.020
Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJV.Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet. 2016;387(10014):176-187. doi: https://doi.org/10.1016/ S0140-6736(15)00473-0
Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, et al. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences. 2022;170:106103. doi: https://doi.org/10.1016/j.ejps.2021.106103
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of infection and public health. 2021;14(12):1750-1766. https://doi.org/10.1016/j.jiph.2021.10.020
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology. 2018;4(3):482-501. doi: 10.3934/microbiol.2018.3.482
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol J. 2017;11:53-62. doi: 10.2174/1874285801711010053.
Singh SB. Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type II topoisomerase. Bioorganic & Medicinal Chemistry. 2016;24(24):6291-6297. doi: https://doi.org/10.1016/j.bmc.2016.04.043
Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals. 2013; 6:1543-1575. doi: https://doi.org/10.3390/ph6121543
Slivka MV, Korol NI, Fizer MM. Fused bicyclic 1,2,4-triazoles with one extra sulfur atom: Synthesis, properties, and biological activity. Journal of Heterocyclic Chemistry. 2020;57(9):3236-3254. doi: https://doi.org/10.1002/jhet.4044
Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. The Journal of Infection in Developing Countries. 2014;8(02):129-136. doi: https://doi.org/10.3855/jidc.3573
Chouhan S, Sharma K, Guleria S. Antimicrobial Activity of Some Essential Oils – Present Status and Future Perspectives. Medicines. 2017;4:58. doi: https://doi.org/10.3390/medicines4030058
Song M, Zeng Q, Xiang Y, Gao L, Huang J, Huang, J, et al. The antibacterial effect of topical ozone on the treatment of MRSA skin infection. Molecular medicine reports. 2018;17(2):2449-2455. doi: https://doi.org/10.3892/mmr.2017.8148
Pantyo VV, Pantyo VI, Danko EM. The impact of piler-radiation on the growth rate of opportunistic microorganisms. Reports of Vinnytsia National Medical University. 2018;22(2):272-275. doi: https://doi.org/10.31393/reports-vnmedical-2018-22(2)-07
Gonçalves AS, Leitão MM, Fernandes JR, Saavedra MJ, Pereira C, Simões M, et al. Photodynamic activation of phytochemical-antibiotic combinations for combatting Staphylococcus aureus from acute wound infections. Journal of Photochemistry and Photobiology B: Biology. 2024;258:112978. doi: https://doi.org/10.1016/j.jphotobiol.2024.112978
Mahmoudi H, Bahador A, Pourhajibagher M, Alikhani MY. Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. Journal of Lasers in Medical Sciences. 2018;9(3):154-160. doi: https://doi.org/10.15171/jlms.2018.29
Kurz B, Berneburg M, Bäumler W, Karrer S. Phototherapy: Theory and practice. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2023;21(8):882-897. doi: https://doi.org/10.1111/ddg.15126
Grzybowski A, Sak J, Pawlikowski J. A brief report on the history of phototherapy. Clinics in Dermatology. 2016;34(5):532-537. doi: https://doi.org/10.1016/j.clindermatol.2016.05.002
Farivar S, Malekshahabi T, Shiari R. Biological Effects of Low Level Laser Therapy. J Lasers Med Sci 2014;5(2):58-62 PMID: 25653800
Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR. Role of low‐level laser therapy in neurorehabilitation. Pm&r. 2010;2:S292-S305. doi: https://doi.org/10.1016/j.pmrj.2010.10.013
Kazem Shakouri S, Soleimanpour J, Salekzamani Y. et al. Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci. 2010;25:73-77. doi: https://doi.org/10.1007/s10103-009-0670-7
Barros NDM, Sbroglio LL, Buffara MDO, Baka JLCES, Pessoa ADS, Azulay-Abulafia L.. Phototherapy. Anais brasileiros de dermatologia. 2021;96(4):397-407. doi: https://doi.org/10.1016/j.abd.2021.03.001
Mesquita-Ferrari RA, Martins MD, Silva Jr JA, Da Silva TD, Piovesan RF, Pavesi VCS, et al.. Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers in Medical Science. 2011;26(3):335-340. doi: https://doi.org/10.1007/s10103-010-0850-5
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, et al. Phototherapy in cancer treatment: strategies and challenges. Signal Transduction and Targeted Therapy. 2025; 10(1):115. doi: https://doi.org/10.1038/s41392-025-02140-y
Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low‐level laser (light) therapy (LLLT) for treatment of hair loss. Lasers in surgery and medicine. 2014;46(2):144-151. doi: https://doi.org/10.1002/lsm.22170
David CM, Gupta P. Lasers in dentistry: a review. Int J Adv Health Sci. 2015;2(8):7-13.
Huang Q, Li Z, Lyu P, Zhou X, Fan Y. Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review. Bioengineering. 2023; 10(3):296. doi: https://doi.org/10.3390/bioengineering10030296
Passanezi E, Damante CA, de Rezende MLR, Greghi SLA. Lasers in periodontal therapy. Periodontology 2000. 2015; 67(1): 268-291. doi: https://doi.org/10.1111/prd.12067
Romanos GE, Gupta B, Yunker M, Romanos EB, Malmstrom H. Lasers use in dental implantology. Implant dentistry. 2013; 22(3):282-288. doi: 10.1097/ID.0b013e3182885fcc
Danko ЕМ, Kostenko YY, Pantyo VV. The use of LED radiation in the treatment of periodontitis. 2024; (5):17-22. https://doi.org/10.33295/1992-576X-2024-5-17
Danko ЕМ, Kostenko YY, Pantyo VV. The use of PILER radiation in the complex treatment of periodontitis. 2024; 1(2024):70-75. doi: https://doi.org/10.32782/2786-7684/2024-1-10
Kim WS, & Calderhead RG. Is light-emitting diode phototherapy (LED-LLLT) really effective?. Laser therapy. 2011;20(3):205-215. doi: https://doi.org/10.5978/islsm.20.205
Mussttaf RA, Jenkins DF, & Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. International journal of radiation biology, 2019;95(2):20-143. doi: https://doi.org/10.1080/09553002.2019.1524944
Maghfour J, Ozog DM, Mineroff J, Jagdeo J, Kohli I, Lim HW. Photobiomodulation CME part I: Overview and mechanism of action. J Am Acad Dermatol. 2024 Nov;91(5):793-802. doi: https://doi.org/10.1016/j.jaad.2023.10.073
Keiser, G. (). Light-Tissue Interactions. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore2016. https://doi.org/10.1007/978-981-10-0945-7_6
Pereira PR, de Paula JB, Cielinski J, Pilonetto M, Von Bahten LC. Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds. Rev Col Bras Cir. 2014;41:4955. doi: https://doi.org/10.1590/S0100-69912014000100010
Thomé AMC, Souza BP, Mendes JPM, Soares LC, Trajano ETL, Fonseca AS. Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans. Laser Phys. 2017;27(6):055602. doi: 10.1088/1555-6611/aab65
Fonseca AS, Campos VMA, Magalhães LAG, Paoli F. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers. Brazilian Journal of Medical and Biological Research. 2015;48(10):929-938. doi: https://doi.org/10.1590/1414-431X20154457
Dixit S, Ahmad I, Gular K, Eid RA, Reddy RS. et al. Efficacy of single versus multiple exposure by electromagnetic modalities on gram-negative and positive bacterial strains in an in-vitro model. Saudi Journal of Biological Sciences. 2021;28(3):1678-1686. doi: https://doi.org/10.1016/j.sjbs.2020.12.004
Pantyo VV, Koval GM, Pantyo VI, Danko EM, & Gulyar SA. Influence of led radiation on the staphylococcus aureus sensitivity to antibiotics. Photobiology and Photomedicine. 2019;26:(56-62). doi: https://doi.org/10.26565/2076-0612-2019-26-07
Pantyo VV, Haleha OV, Kut DZ, Kut MM, Onysko MY, Danko EM, Koval GM, Pantyo VI, Haza KV, Bulyna TB. The effect of low-intensity laser radiation on the sensitivity of Staphylococcus aureus to some halogen-containing azaheterocycles . Regul. Mech. Biosyst. 2024;15(2): 230-234. doi: https://doi.org/10.15421/022434
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel ID, & Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chemical Society Reviews. 2023;52(5):1697-1722. doi: https://doi.org/10.1039/D0CS01051K
Polat E, Kang K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines, 2021;9(6):584. doi: https://doi.org/10.3390/biomedicines9060584
Mahmoudi H, Bahador A, Pourhajibagher M, Alikhani MY. Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. Journal of Lasers in Medical Sciencesю. 2018;9(3):154-160. doi: https://doi.org/10.15171/jlms.2018.29
Pantyo VV, Koval GM, Danko EM, Pantyo VI. Complex impact of polarized and non-polarized low intense light and methylene blue on growth rate of some opportunistic microorganisms . Regul. Mech. Biosyst. 2020;11(4):520-3. doi: https://doi.org/10.15421/022079
Fu XJ, Fang Y, Yao M. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. BioMed Research International. 2013;2013(1):159157. doi: https://doi.org/10.1155/2013/159157
Pantyo VV, Pallah OV, Boiko NV, Danko EM, Koval GM, Pantyo VI, Chobey AS. Impact of methylene blue and LED radiation on microbial biofilms. Regul. Mech. Biosyst.. 2025;16(1):e25014. doi: https://doi.org/10.15421/0225014
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomedicine and Pharmacotherapy. 2018;106:1098–1107. doi: https://doi.org/10.1016/j.biopha.2018.07.049
Rajesh S, Koshi E, Philip K, Mohan A. Antimicrobial photodynamic therapy: An overview. Journal of Indian Society of Periodontology. 2011;15(4):323–327. doi: https://doi.org/10.4103/0972-124X.92563
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250-81. doi: https://doi.org/10.3322/caac.20114







