Effect of obesity on the morphological structure and metabolic processes in the pancreas: a literature review
DOI:
https://doi.org/10.32782/2786-7684/2024-1-13Keywords:
morbidity, pancreatitis, pathological changes, fat deposition, nutritionAbstract
Introduction. Although the world knows that there is a close relationship between obesity, ectopic fat deposition in the pancreas and non-alcoholic fatty liver disease, the mechanisms of this relationship remain unknown and require further research. In addition, there is a lot of data on the correlation between obesity, diseases of the pancreas and the development of diabetes and insulin resistance. And as a result of these processes, anatomical remodeling of the pancreas occurs. The aim of the work was to review and analyze the relationship between obesity and the development of pathological changes in the pancreas based on the modern literature. Material and research methods. To realize the goal, bibliographic and bibliosemantic research methods were used, as well as modern literature of the last 5 years. Results and their discussion. Similar to visceral fat deposition, ectopic fat deposition in the pancreas, as in other organs, may be inversely correlated with subcutaneous fat deposition. This means that individuals who predominantly store fat subcutaneously may exhibit lower levels of ectopic and visceral fat deposition, and vice versa. However, the exact mechanisms of this interaction have not yet been fully elucidated. In this work, the authors describe the specifics of the influence of obesity on the condition of the pancreas. All further research is aimed at establishing the molecular and clinical mechanisms that underlie this relationship, as well as at determining its possible consequences for health. Understanding these mechanisms may help to develop new approaches to the prevention and treatment of nonalcoholic fatty liver disease of the pancreas, liver and related diseases, and obesity in general. Conclusions. Thus, the occurrence of obesity significantly affects the condition and function of the pancreas. In addition, the spread of adipocytes in the parenchyma of the organ and, accordingly, the anatomical structural changes of the pancreas occur in parallel.
References
Huang D., Liu Y., Gong W., Zou J. Causal relationships between obesity and pancreatobiliary diseases: a two-sample Mendelian randomization study. Eat Weight Disord, 2021. 1. № 28(1). P. 63. doi: 10.1007/s40519-023-01592-x.
Chan K., Wong F.S., Pearson J.A. Circadian rhythms and pancreas physiology: A review. Front Endocrinol (Lausanne), 2022. 10. № 13. P. 92. doi: 10.3389/fendo.2022.920261.
Otero A., Becerril S., Martín M., Cienfuegos J.A., Valentí V., Moncada R., Catalán V., Gómez-Ambrosi J., Burrell M.A., Frühbeck G., Rodríguez A. Effect of guanylin peptides on pancreas steatosis and function in experimental diet-induced obesity and after bariatric surgery. Front Endocrinol (Lausanne), 2023. 18. № 14. P. 118. doi: 10.3389/fendo.2023.1185456.
Uc A., Zimmerman M.B., Wilschanski M., Werlin S.L., Troendle D., Shah U., Schwarzenberg S.J., Rhee S., Pohl J.F., Perito E.R., Palermo J.J., Ooi C.Y., Liu Q., Lin T.K., Morinville V.D., McFerron B.A., Husain S.Z., Himes R., Heyman M.B., Gonska T., Giefer M.J., Gariepy C.E., Freedman S.D., Fishman D.S., Bellin M.D., Barth B., Abu-El-Haija M., Lowe M.E. Impact of Obesity on Pediatric Acute Recurrent and Chronic Pancreatitis. Pancreas, 2018. № 47(8). P. 967–973. doi: 10.1097/MPA.0000000000001120.
Pérez S., Rius-Pérez S., Finamor I., Martí-Andrés P., Prieto I., García R., Monsalve M., Sastre J. Obesity causes PGC-1α deficiency in the pancreas leading to marked IL-6 upregulation via NF-κB in acute pancreatitis. J Pathol, 2019. № 247(1). P. 48–59. doi: 10.1002/path.5166.
Кочмарь М.Ю., Литвак Ю.В., Гецко О.І., Палапа В.Й. Морфологічні зміни підшлункової залози у щурів-самців репродуктивного віку після моделювання ожиріння. Науково-практичний журнал для педіатрів та лікарів загальної практики − сімейної медицини, 2020. № 1-2. С. 47–48. DOI 10.24144/1998-6475.2020.47-48.39-46
Inaishi J., Saisho Y. Beta-Cell Mass in Obesity and Type 2 Diabetes, and Its Relation to Pancreas Fat: A Mini-Review. Nutrients, 2020. 16. № 12(12). P. 384. doi: 10.3390/nu12123846.
Sasaki H., Saisho Y., Inaishi J., Watanabe Y., Tsuchiya T., Makio M., Sato M., Kitago M., Yamada T., Itoh H. Associations of birthweight and history of childhood obesity with beta cell mass in Japanese adults. Diabetologia, 2020. № 63. P. 1199–1210.
Shah N., Rocha J.P., Bhutiani N., Endashaw O. Nonalcoholic Fatty Pancreas Disease. Nutr Clin Pract, 2019. 34. № 1. P. 49-56. doi: 10.1002/ncp.10397.
Sevim B.C., Chela H., Ertugrul H., Malik L.S., Malik S., Basar O., Daglilar E., Samiullah S., Gaballah A.H., Tahan V. Non-Alcoholic Fatty Pancreas Disease: The Unsung Disease. Endocr Metab Immune Disord Drug Targets, 2023. № 23(4). P. 485-493. doi: 10.2174/1871530322666220929142905.
Ying W., Fu W., Lee Y.S., Olefsky J.M. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol, 2020. № 16(2). Р. 81–90. doi: 10.1038/s41574-019-0286-3.
Liu Y., Yang Y., Xu C., Liu J., Chen J., Li G., Huang B., Pan Y., Zhang Y., Wei Q., Pandol S.J., Zhang F., Li L., Jin L. Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity. Nat Commun, 2023. № 21, 14(1). Р. 351. doi: 10.1038/s41467-023-35998-z.
Fernandes-da-Silva A., Miranda C.S., Santana-Oliveira D.A., Oliveira-Cordeiro B., Rangel-Azevedo C., Silva-Veiga F.M., Martins F.F., Souza-Mello V. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. Eur J Nutr, 2021. № 60(6). Р. 2949–2960. doi: 10.1007/s00394-021-02542-y.
Heller A., Coffman S.S., Friedman K.A. Obesity-Dependent Accumulation of Titanium in the Pancreas of Type 2 Diabetic Donors. Chem Res Toxicol, 2019. № 15, 32(7). Р. 1351–1356. doi: 10.1021/acs.chemrestox.8b00304.
Rubio-Tomás T., Rueda-Robles A., Plaza-Díaz J., Álvarez-Mercado A.I. Nutrition and cellular senescence in obesityrelated disorders. J Nutr Biochem, 2022. № 99. Р. 108861. doi: 10.1016/j.jnutbio.2021.108861.
Zou Y., Pitchumoni C.S. Obesity, obesities and gastrointestinal cancers. Dis Mon, 2023. № 69(12). Р. 101592. doi: 10.1016/j.disamonth.2023.101592.
Landrier J.F., Derghal A., Mounien L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells, 2019. № 9, 8(8). Р. 859. doi: 10.3390/cells8080859.
Chiyanika C., Chan DF.Y., Hui SC.N., So H.K., Deng M., Yeung DK.W., Nelson EA.S., Chu WC.W. The relationship between pancreas steatosis and the risk of metabolic syndrome and insulin resistance in Chinese adolescents with concurrent obesity and non-alcoholic fatty liver disease. Pediatr Obes, 2020. № 15(9). Р. 12653. doi: 10.1111/ijpo.12653.
Rosqvist F., Kullberg J., Ståhlman M., Cedernaes J., Heurling K., Johansson H.E., Iggman D., Wilking H., Larsson A., Eriksson O., Johansson L., Straniero S., Rudling M., Antoni G., Lubberink M., Orho-Melander M., Borén J., Ahlström H., Risérus U. Overeating Saturated Fat Promotes Fatty Liver and Ceramides Compared With Polyunsaturated Fat: A Randomized Trial. J Clin Endocrinol Metab, 2019. № 1, 104(12). Р. 6207–6219. doi: 10.1210/jc.2019-00160.
Atanes P., Ashik T., Persaud S.J. Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther, 2021. № 228. Р. 107928. doi: 10.1016/j.pharmthera.2021.107928.