METABOLIC REACTION OF PROLINE AND ITS DISTRIBUTION IN TOBACCO PLANTS AT THE INITIAL STAGES OF DEVELOPMENT UNDER CONDITIONS OF SALT AND WATER STRESS

Authors

  • Larysa BRONNIKOVA Oles Honchar Dnipro National University

DOI:

https://doi.org/10.32782/1998-6475.2023.55.17-21

Keywords:

tobacco, proline, salinity, water stress, sustainability, metabolism

Abstract

Scientists are actively searching for and introducing plant species that are resistant to adverse environmental factors. The use of introductions enriches the diversity of species composition. The aim of the study was to investigate the distribution of free proline (Pro) in the vegetative organs (aboveground and underground organs) of the tobacco varieties under investigation. Seedlings were subjected to simulated osmotic stresses for 3 hours by adding mannitol (0,8 M) and seawater salts (25,0% g/l). The content of free proline was measured in Samsun and Dubec varieties, while in the experimental samples we observed a characteristic decrease/stabilisation.

References

AHMED, S., AHMED, S., ROY, S.K., WOO, S.H., SONAWANE, D., SHOHAEL, A.M. (2022) Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4, 361–373. DOI: 10.1515/opag-2019-0033

ALVAREZ, M.E., SAVOURE, A., SZABADOS L. (2022) Proline metabolism as regulatory hub. Trends in Plant Science, 27(1), 39–55. DOI: 10.1016/j.tplants.2021.07.009

ANDRIUSHCHENKO, V.K., SAIANOVA, V.V., ZHUCHENKO, А.А., DIACHENKO, N.I., CHILIKINA, L.A., DROZDOV, V.V., KOROCHKINA, S.K., CHEREP, G.I., MEDVEDEV, V.V., NIUTIN, Yu.I. (1981) Modifikatsiia metoda opredeleniia prolina dlia vyiavleniia zasukhoustoichivykh form roda Lycopersicon Tourn. Izvestia AN Moldavskoi SSR, 4, 55–60.

ATTA, K., MONDAL, S., GORAI, S., SINGH, A.P., KUMARI, A., GHOSH, T., ROY, A., HEMBRAM, S., GAIKWANT, D.J., MONDAL, S., BHAGANNATH, S., JHA, U.C., JESPERSEN, D. (2023) Impact of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science, 14, 1241736. DOI: 10.3389/fpls.2023.1241736

DUBROVNA, O.V., MYKHALSKA, S.I., KOMISARENKO, A.H. (2022) Vykorystannia heniv metabolizmu prolinu v henetychnii inzhenerii roslyn. Tsytolohiia i Henetyka, 56(4), 60–8. (in Ukrainian). DOI: 10.3103/S00955272204003X

FUNCK, D., BAUMGARTEN, L., STIFT, M., WIRÈN, VON N., SCHÖNEMANN, L. (2020) Differential contribution of P5CS isoforms to stress tolerance in Arabidopsis. Frontiers in Plant Science, 11, 565134. DOI: 10.3389/fpls.2020.565134

HASEGAN, M., BRESSAN, R.A., ZHU, J.–K., BOHNERT, H.J. (2000). Plant cellular and molecular responses to high salinity. Annual Review Plant Physiolgy Molecular Bioliology, 51, 463–499. DOI: 10.1146/annurev.arplant.51.1.463

HUIZBERS, M.M.E., MARTINEZ – JÚLVEZ, M., WESTPHAL, A.H., DELGADO – ARCINIEGA, E., MEDIA, M., BERKEL VAN, W.J. (2017) Proline dehydrogenase from Thermus thermophilus does not discriminate. Scientific reports, 7, 43880, 1–3. DOI: 10.1038/srep.43880

IMRAN, Q.M., FALAK, N., HUSSAN, A., MAN, B.-G., YUN, B-W. (2021). Abiotic stress biotechnological tools in stress responce. Journal Agronomy, 11(8), 15–79. DOI: 10.3390/agronomy11081579

ISLAM, M.R., NAVEED, S.A., ZHANG, Y., LI, Z., ZHAO, X., FIAZ, S., ZHANG, F., WU, Z., HU, Z., FU, B., AHI, Y., SHAH, F., XU, J., WANG, W. (2022) Identification of candidate genes for salinity and anaerobic tolerance at the germination stage in rice by genome – wide association analyses. Frontiers in Genetics, 13, 822516. DOI: 10.3389/fgene.2022.822516

KAUR, D., GREWAL, S.K., KAUR, J., Sing, S. (2017) Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biologia Plantarum, 359–366. DOI: 10.1007/s105335-016-0695-2

MAGHSOUDI, K., EMAM, Y., NIAZI, A., PESSARAKLI, M., ARVIN, M.J. (2018) Proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 11, 461–471. DOI: 10.1080/17429145.2018.1506516

MUNAWEERA, T.I.K., JAYAWARDANA, N.U., RAZARATNAM, R., DISSANAYAKE, N. (2022) Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture and food security, 11(26). DOI: 10.1186/s40066-022-00369-2

MYKHALSKA, S.I., KOMISARENKO, A.H. (2022) Aktualni napriamky suchasnykh biotekhnolohii pshenytsi. Fiziolohiia Roslyn i Henetyka, 54(3), 187–213. (in Ukrainian). DOI: 10.15407/frg202.03.187

MYKHALSKA, S.I., KOMISARENKO, A.H., KURCHII, V.M. (2021) Heny metabolizmu prolinu v biotehnolohii pidbyshchenniia osmostiikosti phenytsi. Faktory eksperymentalnoi evoliutsii orhanizmiv, 28, 94–99 (in Ukrainian). DOI: 10.7124/FEEO.v28.1382

RAI, A.N., PENNA, S. (2013) Molecular evolution of plant P5CS gene involved in proline biosynthesis. Molecular Biology Repid, 40(11), 6429–6436. DOI: 10.1007/s11033-013-2757-2

QAYYUM, A., RAZZA, A., BIBI, Y., KHAN, S.U., ABBASI, K.S., SHER, A., MEHMOOD, A., AHMED, W., MAHMOOD, I., MANAF, A., KHAN, A., FARID, A., JANKS, M.A. (2018) Water stress effects on biochemical traits and antiozidant activies of wheat (Triticum aestivum L.) under in vitro conditions. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 68(4), 283–290. DOI: 10.1080/09064710.2017.1395064

WU, L., WANG, L., HUI, W., ZHAO, F., WANG, P., SU, C., GONG, W. (2022) Physiology of plant responses to water stress and related genes: a review. Journal Forests, 13(2), 324. DOI: 10.3390/f13020324

YANG, Z., ZHAO, X., SHANG, W., LIU, Y., JI, J.F., LIU, J.P., TONG, C. (2021) Pyrroline-5-carboxylate synthetase senses cellular stress and modulates metabolism by regulating mitochondrial respiration. Cell Death & Differentiation, 28(1), 303–319. DOI: 10.1038/s41418-020-0601-5

ZOU, B., YANG, L-Y., WANG, W., ZHANG, Z. (2023) Editorial: Molecular and genetic mechanisms of chilling tolerance in plants. Frontiers in Plant Science, 14, 1281889. DOI: 10.3389/fpls.2023.1281889

Downloads

Published

2024-09-30