METABOLIC REACTION OF PROLINE AND ITS DISTRIBUTION IN TOBACCO PLANTS AT THE INITIAL STAGES OF DEVELOPMENT UNDER CONDITIONS OF SALT AND WATER STRESS
DOI:
https://doi.org/10.32782/1998-6475.2023.55.17-21Keywords:
tobacco, proline, salinity, water stress, sustainability, metabolismAbstract
Scientists are actively searching for and introducing plant species that are resistant to adverse environmental factors. The use of introductions enriches the diversity of species composition. The aim of the study was to investigate the distribution of free proline (Pro) in the vegetative organs (aboveground and underground organs) of the tobacco varieties under investigation. Seedlings were subjected to simulated osmotic stresses for 3 hours by adding mannitol (0,8 M) and seawater salts (25,0% g/l). The content of free proline was measured in Samsun and Dubec varieties, while in the experimental samples we observed a characteristic decrease/stabilisation.
References
AHMED, S., AHMED, S., ROY, S.K., WOO, S.H., SONAWANE, D., SHOHAEL, A.M. (2022) Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4, 361–373. DOI: 10.1515/opag-2019-0033
ALVAREZ, M.E., SAVOURE, A., SZABADOS L. (2022) Proline metabolism as regulatory hub. Trends in Plant Science, 27(1), 39–55. DOI: 10.1016/j.tplants.2021.07.009
ANDRIUSHCHENKO, V.K., SAIANOVA, V.V., ZHUCHENKO, А.А., DIACHENKO, N.I., CHILIKINA, L.A., DROZDOV, V.V., KOROCHKINA, S.K., CHEREP, G.I., MEDVEDEV, V.V., NIUTIN, Yu.I. (1981) Modifikatsiia metoda opredeleniia prolina dlia vyiavleniia zasukhoustoichivykh form roda Lycopersicon Tourn. Izvestia AN Moldavskoi SSR, 4, 55–60.
ATTA, K., MONDAL, S., GORAI, S., SINGH, A.P., KUMARI, A., GHOSH, T., ROY, A., HEMBRAM, S., GAIKWANT, D.J., MONDAL, S., BHAGANNATH, S., JHA, U.C., JESPERSEN, D. (2023) Impact of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science, 14, 1241736. DOI: 10.3389/fpls.2023.1241736
DUBROVNA, O.V., MYKHALSKA, S.I., KOMISARENKO, A.H. (2022) Vykorystannia heniv metabolizmu prolinu v henetychnii inzhenerii roslyn. Tsytolohiia i Henetyka, 56(4), 60–8. (in Ukrainian). DOI: 10.3103/S00955272204003X
FUNCK, D., BAUMGARTEN, L., STIFT, M., WIRÈN, VON N., SCHÖNEMANN, L. (2020) Differential contribution of P5CS isoforms to stress tolerance in Arabidopsis. Frontiers in Plant Science, 11, 565134. DOI: 10.3389/fpls.2020.565134
HASEGAN, M., BRESSAN, R.A., ZHU, J.–K., BOHNERT, H.J. (2000). Plant cellular and molecular responses to high salinity. Annual Review Plant Physiolgy Molecular Bioliology, 51, 463–499. DOI: 10.1146/annurev.arplant.51.1.463
HUIZBERS, M.M.E., MARTINEZ – JÚLVEZ, M., WESTPHAL, A.H., DELGADO – ARCINIEGA, E., MEDIA, M., BERKEL VAN, W.J. (2017) Proline dehydrogenase from Thermus thermophilus does not discriminate. Scientific reports, 7, 43880, 1–3. DOI: 10.1038/srep.43880
IMRAN, Q.M., FALAK, N., HUSSAN, A., MAN, B.-G., YUN, B-W. (2021). Abiotic stress biotechnological tools in stress responce. Journal Agronomy, 11(8), 15–79. DOI: 10.3390/agronomy11081579
ISLAM, M.R., NAVEED, S.A., ZHANG, Y., LI, Z., ZHAO, X., FIAZ, S., ZHANG, F., WU, Z., HU, Z., FU, B., AHI, Y., SHAH, F., XU, J., WANG, W. (2022) Identification of candidate genes for salinity and anaerobic tolerance at the germination stage in rice by genome – wide association analyses. Frontiers in Genetics, 13, 822516. DOI: 10.3389/fgene.2022.822516
KAUR, D., GREWAL, S.K., KAUR, J., Sing, S. (2017) Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biologia Plantarum, 359–366. DOI: 10.1007/s105335-016-0695-2
MAGHSOUDI, K., EMAM, Y., NIAZI, A., PESSARAKLI, M., ARVIN, M.J. (2018) Proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 11, 461–471. DOI: 10.1080/17429145.2018.1506516
MUNAWEERA, T.I.K., JAYAWARDANA, N.U., RAZARATNAM, R., DISSANAYAKE, N. (2022) Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture and food security, 11(26). DOI: 10.1186/s40066-022-00369-2
MYKHALSKA, S.I., KOMISARENKO, A.H. (2022) Aktualni napriamky suchasnykh biotekhnolohii pshenytsi. Fiziolohiia Roslyn i Henetyka, 54(3), 187–213. (in Ukrainian). DOI: 10.15407/frg202.03.187
MYKHALSKA, S.I., KOMISARENKO, A.H., KURCHII, V.M. (2021) Heny metabolizmu prolinu v biotehnolohii pidbyshchenniia osmostiikosti phenytsi. Faktory eksperymentalnoi evoliutsii orhanizmiv, 28, 94–99 (in Ukrainian). DOI: 10.7124/FEEO.v28.1382
RAI, A.N., PENNA, S. (2013) Molecular evolution of plant P5CS gene involved in proline biosynthesis. Molecular Biology Repid, 40(11), 6429–6436. DOI: 10.1007/s11033-013-2757-2
QAYYUM, A., RAZZA, A., BIBI, Y., KHAN, S.U., ABBASI, K.S., SHER, A., MEHMOOD, A., AHMED, W., MAHMOOD, I., MANAF, A., KHAN, A., FARID, A., JANKS, M.A. (2018) Water stress effects on biochemical traits and antiozidant activies of wheat (Triticum aestivum L.) under in vitro conditions. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 68(4), 283–290. DOI: 10.1080/09064710.2017.1395064
WU, L., WANG, L., HUI, W., ZHAO, F., WANG, P., SU, C., GONG, W. (2022) Physiology of plant responses to water stress and related genes: a review. Journal Forests, 13(2), 324. DOI: 10.3390/f13020324
YANG, Z., ZHAO, X., SHANG, W., LIU, Y., JI, J.F., LIU, J.P., TONG, C. (2021) Pyrroline-5-carboxylate synthetase senses cellular stress and modulates metabolism by regulating mitochondrial respiration. Cell Death & Differentiation, 28(1), 303–319. DOI: 10.1038/s41418-020-0601-5
ZOU, B., YANG, L-Y., WANG, W., ZHANG, Z. (2023) Editorial: Molecular and genetic mechanisms of chilling tolerance in plants. Frontiers in Plant Science, 14, 1281889. DOI: 10.3389/fpls.2023.1281889