ANALYSIS OF SEED GENERATIONS OF BIOTECHNOLOGICAL WHEAT PLANTS AN ADDITIONAL COPY OF THE GENE ORGYTIN-δ-AMINOTRANSFERASE OF ALFALFA

Authors

  • Larysa BRONNIKOVA Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.32782/1998-6475.2025.58.11

Keywords:

proline, Triticum aestivum L., osmotic stress, drought, productivity, yield, resistance, transgenic plants.

Abstract

Cultivation of biotechnological winter wheat progeny under water deficit and salinity conditions allowed to analyse the level of free proline and to relate it to grain productivity. Under stressful conditions, the superiority of free proline content in the vegetative organs of genetically modified wheat compared to the original forms was noted.It was shown that the main indicators of the yield structure of the seed generation of wheat with a functional transgenesignificantly exceeded the control variants under normal and stress conditions. The object of the study was T1–T4 variants of winter wheat, genotype UK-209, UK 322/17. The aim of this study was to determine the tolerance to water deficit of seed generations T1–T4 of genetically modified wheat with partially suppressed expression of the proline dehydrogenase (ProDH) gene based on physiological and biochemical parameters and economic characteristics of plants. We used the following research methods: determination of yield structure parameters and biochemical methods for determining L-proline (Pro).The level of Pro- and analysed elements of productivity in the progeny of transgenic plants and their original forms under normal and insufficient water supply was investigated. The winter wheat plants of T1-T4 generations of genotype UK 322/17, UK 209 h were studied for resistance to water and salt stress. The responses to short-term salinity and water deficit associated with the accumulation of free proline, as well as the nature of recovery fromstress were analysed.

References

ABRARM, M., SOHAIL, M., SAQIB, M., AKHTAR, J., ABBAS, G., WAHABH, H., MUMTAZM, Z., MEHMOOD, K., MEMON, M.S., SUN, XUM. (2022) Interactive salinity and water stress severely reduced the growth, stress tolerance, and physiological responses of guava (Psidium guajava L.). Scientific reports, 12, 18952. DOI: 10.1038/s41598-022-22602-5

CORDEA, M. I., BORSAI, O. (2021) Salt and water stress responses in plants. In: Hasanuzzaman, M., Nahar, K. (Eds.) Plant Stress Physiology – Perspective in Agriculture. DOI: 10.5772/intechopen.101072

DARM I., IFRAN, M., REHMAN, F., NAUSHIN, F. (2016) Proline accumulation in plants: roles in stress tolerance and plant development. – In: Osmilites and plants acclimation to changing environment onics technologies. pp. 155–166 DOI: 10.1007/978-81-322-2616-1_9

DE MELO, B. P., DE AVELAR CARPINETTI, P., FRAJA, O. T., RODRIGES-SILVA, P. L., FIPRESI, V. S., DE CAMARGOS, L. F., DA SILVA FERREIRA, M. F. (2022) Abiotic stresses in plants and their marcers: a practice view of plant stress responses and programmed cell death mechanisms. Plants, 11 (1100), 1–25. DOI: plants11091100

DUBROVNA, O. V., SLIVKA, L. V. (2022) Agrobacte- rium – oposeredkovana transformatsiia perspektyvnych henotypiv ozymoii pshenytsi za vykorystannia ornitin- δ-aminotrasferazy. Fiziolohiia Roslyn i henetyka, 54 (4), 311–327. (in Ukrainian). DOI: 10.15407/ frg2022.04.311

IMRAN, Q. M., HUSSAN, A., MAN, B-G., YUN, B-W. (2021) Abiotic stress biotechnological tools in response. Agronomy. 11 (8), 1579. DOI: 10.3390/ agronomy11081579

KANWAL, M., GOGOI, N., JONES, B., BARIANA, H., BANSAL, U., AHMAD, N. (2022) Pollen: A potential explants for genetic transformation in wheat (Triticum aestivum L.). Agronomy, 12 (9), 2009, DOI: 10.3390/ agronomy12092009

KHOMA, Y. A., KUTSOKON, N. K., KHUDOLIEIVA, L. V., SHEVCHENKO, V. V., RASHYDOV, N. M. (2021) Proline content in the leaves poplar and willov under water deficit. Regulatory Mechanisms in Biosystems, 12 (3), 519-522. DOI: 10.15421/022171

KOMISARENKO, A. H., MYKHAL SKA, S. I. (2023). Doslidzhennia naslidkiv transhennykh roslyn Triticum aestivum L. iz chastkovoiu supresiieiu prolindehidr o he- na zy. Faktory eksperimentalnoi evolutsyi orhanizmiv, 32, 103–108. (in Ukrainian). DOI: 10.7124/FEEO.v.1544

KOMISARENKO, A. H., MYKHAL SKA, S. I., KUR- CHYI, V. M. (2020) Oposeredkovanist Т4 pokolinnia odnodolnyh i dvodolnyh roslyn iz pryhnichenoiu ekspesiieiu hena katabolizmu prolinu. Fiziolohiia roslyn i henetyka, 52 (5), 434–448. (in Ukrainian). DOI: 10.15407/frg2020.05434

MYKHALSKA, S. I., KOMISARENKO, A. H., MY KHAL- SKYI, L. O. (2023) Doslidzhennia kompleksu adaptatsiinyh harakterystyk do umov vodnoho defitsitu henetychno zminenyh roslyn Triticum aestivum L. z chastkovoiu supresiieiu hena katabolizmu prolinu. Fiziologiya roslin i genetika, 55 (3), 251–264. (in Ukrainian). DOI: 10.15407/frg2023/03/251

MOUMITA, M. J., BISWAS, P., NAHAR, K., FUJITA, M., HASSANUZZAMAN, M. (2019) Exogenus application of gibberellic acid mitigates drought – induced damage in spring wheat. Acta Agronomica, 72 (2), 1776 DOI: 10.3390/antiox9080681

PALIVODA, Yu. M., GAVIY, V. M., KUCH- MEN KO, O. V. (2021) Fizioloho-biohimichni pokaznyki pshenytsi miakoi (Triticum aestivum L.) pry modeliuvanni vodnoho defitsytu za dii metabolichno aktyvnyh spoluk. Naukovi zapiski Ternopiolskoho natsionalnoho pedahohichnoho universitetu Volodymyra Hnatyika. Seriia Biolohiia, 81(3), 44–54. (in Ukrainian). DOI: 10.25128/2078-2357.21.3.7

SELEIMAN M. F., AL-SUHAIBI, N., ALIN., AKMAL, M., ALOTAIBI, M., REFAY, Y., DINDROGLU, T., ABDUL-WAJIDH, H., BATTAGLIAM, L. (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effecrs. Plants, 10(2), 259. DOI: 10.3390/plants10020259

SEMIANI Y., BRAEDA M. S., BENBELKACEM A., SEMIANI M. (2016) Comparative study of proline accumulation of some varieties of Durum weat (Triticum durum Desf.) under stress conditions. Bulletin UASVM Agriculture. 73 (2), 306–310. DOI: 10.15835/ buasvmcn-agr:12425

WANG, Z., YANG, Y., YADOV, V., HE, Y., ZHANG, X., WEI, C. (2022) Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit. Horticultural Plant Journal, 8 (5), 615–626. DOI: 10.1016/j. hpj.2022.06.009

ZHANG, H., ZHU, J., GONG, Z., ZHU, J-K. (2022) Abiotic stress responses in plants. Nature reviews genetics. 23, 104–119. DOI: 10.1038/s41576-021-004413-0

ZHENG, K., CHEN, B., LU, G.; HAN, B. (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Bioscience Biotechnology Research Communications, 2(4), 832–837. DOI: 10.1016/j.bbrc.2008.12.163

Downloads

Published

2025-05-30