THE ERA OF GREAT GENOMIC DISCOVERIES: A BRIEF OUTLINE OF THE HISTORY OF GENOME DIVERSITY SCIENCE

Authors

  • T. Oleksyk Uzhhorod National University
  • V. Mirutenko Uzhhorod National University
  • Ya. Hasynets Uzhhorod National University
  • R. Kish Uzhhorod National University
  • A. Voshchepynets Uzhhorod National University

DOI:

https://doi.org/10.32782/1998-6475.2025.58.24

Keywords:

genomics, human genome, bioinformatics, phylogenetics, databases, sequencing, genetic projects

Abstract

In the dynamic world of modern biology, the rapid development of the new science of genomics – which merges biological methods with computer technologies – has opened up vast possibilities for understanding the mysteries of living organisms, from the simplest bacteria to humans. Despite numerous discoveries in the field of genome structure and function, we are still at the early stages of the emergence and development of this discipline. Global sequencing initiatives such as the Human Genome Project (HGP), HapMap, the 1000 Genomes Project, and others have expanded our understanding of human genetic diversity in the context of population history and the evolution of our species. Genomic methods have revolutionized medicine by enabling the development of personalized treatment strategies tailored to the genetic characteristics of each individual. Modern technologies such as CRISPR-Cas9 and single-cell sequencing are opening new frontiers for genomic research, while also presenting novel ethical, legal, and social challenges previously unknown. Genomics has significantly contributed to the growth of today’s knowledge-based economy, particularly by advancing bioinformatics, biomedicine, and biotechnology. It offers new therapies and diagnostic tools and facilitates the rise of precision medicine. The shift to next-generation sequencing (NGS) technologies and advancements in computing have made genomic information more affordable and accessible. The future of genomics promises radical changes in healthcare, agriculture, and biodiversity conservation, offering more accurate diagnostics and personalized treatments. Progress in this field is the result of the dedicated work of a large cohort of scientists worldwide and the international collaboration among them, which has opened – and continues to open – new horizons for improving human life.

References

ALON, U. (2020) An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC.

ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W., LIPMAN, D. J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. DOI: 10.1016/S0022-2836(05)80360-2

CAULFIELD, T., MCGUIRE, A.L. (2012) Direct-to- consumer genetic testing: Perceptions, problems, and policy responses. Annual Review of Medicine, 63, 23–33. DOI: 10.1146/annurev-med-062110-123753

CAVALLI-SFORZA, L. L., FELDMAN, M. W. (2003) The application of molecular genetic approaches to the study of human evolution. Nature Genetics, 33, 266–275. DOI: 10.1038/ng1113

CHURCH, G. M. (2005) The personal genome project. Molecular Systems Biology, 1 (1). DOI: 10.1038/ msb4100040

COLLINS, F. S., GREEN, E. D., GUTTMACHER, A. E., GUYER, M. S. (2003) A vision for the future of genomics research. Nature, 422 (6934), 835–847. DOI: 10.1038/nature01626

DELSUC, F., BRINKMANN, H., PHILIPPE, H. (2005) Phylogenomics and the reconstruction of the tree of life. Nature reviews. Genetics, 6 (5), 361–375. DOI: 10.1038/nrg1603

DOUDNA, J. A., CHARPENTIER, E. (2014) The new frontier of genome engineering with CRISPR- Cas9. Science, 346 (6213), 1258096. DOI: 10.1126/ science.1258096

ELLEGREN H. (2008) Comparative genomics and the study of evolution by natural selection. Molecular ecology, 17(21), 4586–4596. DOI: 10.1111/j.1365- 294X.2008.03954.x

INTERNATIONAL HUMAN GENOME SEQUENCING CONSORTIUM (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921. DOI: 10.1038/35057062

KITANO, H. (2002) Systems biology: a brief overview. Science, 295 (5560), 1662–1664. DOI: 10.1126/ science.1069492

KNOPPERS, B. M., CHADWICK, R. (2005) Human genetic research: Emerging trends in ethics. Nature Reviews Genetics, 6 (1), 75–79. DOI: /10.1038/nrg1505

KOONIN, E. V. (2012) The Logic of Chance: The Nature and Origin of Biological Evolution. FT Press.

KRAUSE, J., TRAPPE, T. (2016) A Short History of Humanity: A New History of Old Europe. Vintage.

LANDER, E. S. (2011) Initial impact of the sequencing of the human genome. Nature, 470 (7333), 187–197. DOI: 10.1038/nature09792

LIAO, WW., ASRI, M., EBLER, J., DOERR D., HAUKNESS, M., PATEN, B. (2023) A draft human pangenome reference. Nature, 617, 312–324. DOI: 10.1038/s41586-023-05896-x

MARDIS, E. R. (2008) Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387–402. DOI: 10.1146/annurev. genom.9.081307.164359

McINERNEY, J. O., McNALLY, A., O’CONNELL, M. J. (2017) Why prokaryotes have pangenomes. Nature Microbiology, 2(4), 1–5.

MOUNT, D. W. (2007) Bioinformatics: Sequence and genome analysis. Cold Spring Harbor Laboratory Press.

NURK, S., KOREN, S., RHIE, A. Rautiainen, M., Bzikadze, A., Phillippy, A. M. (2022) The complete sequence of a human genome. Science, 376(6588), 44–53. DOI: 10.1126/science.abj6987

OLEKSYK, T. K., WOLFSBERGER, W. W., SCHU- BEL KA, K., MANGUL, S., O’BRIEN, S. J. (2022) The Pioneer Advantage: Filling the blank spots on the map of genome diversity in Europe. GigaScience, 11, giac081. DOI: 10.1093/gigascience/giac081

OLEKSYK, T. K., WOLFSBERGER, W. W., WEBER, A. M., SHCHUBELKA, K., OLEKSYK, O. T., LEVCHUK, O., PATRUS, A., LAZAR, N., CASTRO- MARQUEZ, S. O., HASYNETS, Y., BOLDY- ZHAR, P., NEYMET, M., URBANOVYCH, A., STA- KHOV SKA, V., MALYAR, K., CHERVYAKOVA, S., PODOROHA, O., KOVALCHUK, N., RODRIGUEZ- FLORES, J. L., ZHOU, W., MEDLEY, S., BATTISTUZZI, F., LIU, R., HOU, Y., CHEN, S., YANG, H., YEAGER, M., DEAN, M., MILLS, R. E., SMOLANKA, V. (2021) Genome diversity in Ukraine. GigaScience, 10 (1), giaa159. DOI: 10.1093/ gigascience/giaa159

PAABO, S. (2014) Neanderthal Man: In Search of Lost Genomes. Basic Books.

PEVZNER, P. A. (2000) Computational molecular biology: An algorithmic approach. MIT Press.

HUMAN CELL ATLAS MEETING PARTICIPANTS (2017) The Human Cell Atlas. eLife, 6, e27041. DOI: 10.7554/eLife.27041

REICH, D. (2018) Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past. Pantheon Books.

ROBERTS, A. (2015) The Incredible Unlikeliness of Being: Evolution and the Making of Us. Heron Books.

RONAGHI, M. (2000) Improved Performance of Pyrosequencing Using Single-Stranded DNA-Binding Protein. Analytical Biochemistry, 286 (2), 282–288. DOI: 10.1006/abio.2000.4808

SHENDURE, J., JI, H. (2008) Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145. DOI: 10.1038/nbt1486

THE 1000 GENOMES PROJECT CONSORTIUM (2015) A global reference for human genetic variation. Nature, 526 (7571), 68–74. DOI: 10.1038/nature15393

TOPOL, E. J. (2014) Individualized medicine from prewomb to tomb. Cell, 157 (1), 241–253. DOI: 10.1016/ j.cell.2014.02.012

UK10K CONSORTIUM (2015) The UK10K project identifies rare variants in health and disease. Nature, 526(7571), 82–90. DOI: 10.1038/nature14962

VENTER, J. C., ADAMS, M. D., MYERS, E. W., LI, P. W., MURAL, R. J.,... & ZHU, X. (2001) The sequence of the human genome. Science, 291(5507), 1304–1351. DOI: 10.1126/science.1058040

WATSON, J. D., CRICK, F. H. C. (1953) Molecular Structure of Nucleic Acids. Nature, 171, 737–738.

WILLERSLEV, E., DAVISON, J. (2021) Origins: A Genetic History of the Americas. St. Martin’s Press.

Published

2025-05-30