Microbiota of rhizosphere Salix sp. in different agrotechnical practice
DOI:
https://doi.org/10.24144/1998-6475.2018.45.7-14Keywords:
bioremediation, soil microbiota, mineralization processes, nitrogen fixators, energy crops.Abstract
The study has established the regularities of distribution of certain physiological groups of microbial cenosis in conditions of growing of fruit and energy plants. In case of willow, the numbers of ammonifiers, micromycetes, actinomycetes, cellulolytic and oligonitrophilic microorganisms were observed to reduce compared to the control. In case of apple-trees, the number of microorganisms was higher but still within the control values. Growing of willows leads to stabilization of soil solution reaction, higher concentration of ammonium nitrogen, and lower concentration of nitrate nitrogen and potassium, compared with the control. We have established decreased concentrations of humus vs. control in both cases – growing of willows and apple-trees, which figure correlates with the number of pedotrophs. Notwithstanding the lowered number of some physiological groups of microorganisms, the soil with willows was characterized by highly intensive mineralization processes, in particular those of transformation of organic matters. An open-field long-term fertilization experiment was set up during 2011 with willow (Salix triandra x Salix viminalis ’Inger’), grown as an energy crop. The brown forest soil was treated during June 2011, May 2013, and May 2016 with municipal biocompost (MBC), municipal sewage sludge compost (MSSC), willow ash (WA) and sulfuric urea (SU) and two times (2011, 2013) with rhyolite tuff (RT). Thus, the most indicative changes in the soil microbiota against the control plot were found in case of the use of municipal sewage sludge compost; rise in the number of intestinal bacteria, ammonifiers, micromycetes and actinomycetes. In case of the use of municipal biocompost rise in the levels of intestinal bacteria, microscopic fungi, actinomycetes, pedotrophs and cellulolytic bacteria were found. While calculating the mineralization/immobilization index, it was shown that the most significant deviation from the control plot was found in rhyolite tuff treated soil – a decrease by 6 times, and in case of willow ash by 2.3 times, which proves the inhibition of mineralization of the organic substances in the soil.
References
ANDREYUK, K.I., YUTYNS'KA, H.O., ANTYPCHUK, A.F., VALAHUROVA, O.V., KOZYRYTSKA, V.Е., PONOMARENKO, S.P. (2001) Funktsionuvannia mikrobnykh uhrupovan v umovakh antropohennoho navantazhennia. Oberehy, Kyiv (in Ukrainian).
BOBRYK, N.Yu. (2015) Poshyrennia ta akumuliatsiia vazhkykh metaliv u gruntakh pryzaliznychnykh terytorii. Visnyk Dnipropetrovskoho universytetu. Biolohiia, Ekolohiia, 23(2): 183–189 (in Ukrainian).
BOBRYK, N., KRYVTSOVA, M., NIKOLAICHUK, V. (2012) Mikrobotsenoz gruntu luchnoi ekosystemy v umovakh vplyvu zaliznychnoho transportu. Visnyk Dnipropetrovskoho universytetu. Biolohiia. Ekolohiia, 20(2): 3–9 (in Ukrainian).
BOBRYK, N., KRYVTSOVA, M., NIKOLAICHUK, V. (2013) Biolohichna aktyvnist gruntiv pryzaliznychnykh ekosystem za mikrobiolohichnymy pokaznykamy. Gruntoznavstvo, 14(1–2): 40–48 (in Ukrainian).
BOBRYK, N.Yu., KRYVTSOVA, M.V., NIKOLAICHUK, V.I., VOLOSHCHUK, I. (2016) Reaktsiia mikrobioty gruntu na diiu vazhkykh metaliv u zoni vplyvu zaliznychnoho transportu. Visnyk Dnipropetrovskoho universytetu. Biolohiia. Ekolohiia, 24(1): 151–156 (in Ukrainian).
BOIKO, N., BALAZHI, S., HALAS, Yu., KOVAL, H., KOVALCHUK, N., KOZLOVSKYI, V., KOLESNYK, A., KOLESNYK, O., LEHANY, A., ROMANIUK, N. (2008) Zabrudniuvachi ta yikh vplyvy na ekolohichno vrazlyvi ekosystemy Verkhnoho Potyssia. Uzhhorod-Nieregyhaza (in Ukrainian). GYURICZA, CS., HEGYESI, J., KOLHELB, N. (2011) Rövid vágásfordulójú fűz (Salix sp.) energiaültetvény termesztésének tapasztalatai és életciklus-elemzésének eredményei. [Experience drawn from the production of short harvest cycle willow (Salix sp.) as energy crop and results of its life cycle analysis]. Növénytermelés, 60(2): 45–65 (in Hungarian).
HELETUKHA, H.H., ZHELIEZNA, T.A., TRYBOI, O.V. (2014) Perspektyvy vyroshchuvannia ta vykorystannia enerhetychnykh kultur v Ukraini. Analitychna zapyska BAU. Available at: http://www.uabio.org/img/files/docs/position-paperuabio- 10-ua.pdf (in Ukrainian).
HORIELOV, O.M., ELLANSKA, N.E., YUNOSHEVA, O.P., HORIELOV, O.O., VIROVKA, V.M. (2017) Biolohichna aktyvnist gruntu enerhetychnykh kultur. Naukovi dopovidi NUBIP Ukrainy, 1(65). Available at: http://journals.nubip.edu.ua/index.php/Dopovidi/artic le/view/8125 (in Ukrainian).
JONIEC, J., KWIATKOWSKA, E. (2012) Microbiological activity of soil amended with granulated fertilizer from sewage sludge. Journal of Elementology, 1: 143–154. DOI: 10.5601/jelem.2014.19.1.586.
KRYVTSOVA, M., BILAK, O., SALAMON, I., BOBRYK, N., CHYCHERSKA, М. (2018) Soil microbiota in conditions of growing Salix viminalis and Malus sp. International Scientific proceedings of conference for Young Scientists «Regional problems of environmental protection». May 30 –June 1, 2018, Ukraine, Odessa, pp. 8–13.
KRYVTSOVA, M., BOBRIK, N., KOLESNIK, A., SIMON, L. (2017a) Microbiota of upper soil in a long-term open-field fertilization experiment with energy willow (Salix sp.). Proceedings of Abstracts. International Conference on Long-term Field Experiments (Ed. Makádi, M.). Nyíregyháza, Hungary. 27–28 September, 2017, p. 42.
KRYVTSOVA, M., KOLESNYK, A., IGNATKO, T., BOBRIK, N., KOGUCH, T. (2017b) Ecological state of urban ecosystems (on the example of lawns in Uzhhorod). Proceedings boocks of full papers. Ecology symposium. Kayseri, Turkey. 11-13 May, 2017, pp. 301–308.
KRYVTSOVA, M., BOBRIK, N., SABOV, M., SABOV, M. (2017c) Mikrobiolohichna indykatsiia gruntiv u zoni vplyvu Perechynskoho lisokhimkombinatu. Agrobiodiversity for Improving Nutrition, Health and Life Quality, pp. 258–263. DOI: 10.15414/agrobiodiversity.2017.2585- 8246.258-263 (in Ukrainian).
KRYVTSOVA, M., SIMON, L., BOBRYK, N., TIMOSHOK, N., SPIVAK, N., DOCTOR, K. (2018) The influence of energy willow (Salix viminalis L.) cultivation on soil microbiota. Proceedings of Abstracts. Permaculture and organic agriculture. International scientific and practical conference. Uzhhorod, Ukraine. 24–25 February, 2018, pp. 23– 25.
KUFFNER, M., DE MARIA, S., PUSCHENREITER, M., FALLMANN, K., WIESHAMMER, G., GORFER, M., STRAUSS, J., RIVELLI, A.R., SESSITSCH, A. (2010) Culturable bacteria from Znand Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. Journal of Applied Microbiology, 108(4): 1471– 1484. http://dx.doi.org/10.1111/j.1365-2672.2010.04670.x.
LEBRUN, M., MIARD, F., NANDILLON, R., HATTAB-HAMBLI, N., SCIPPA, G., BOURGERIE, S., MORABITO, D. (2017) Ecorestoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. Journal of Soils and Sediments, 18(6): 2188–2202. DOI: http://dx.doi.org/10.1007/s11368-017-1763-8.
MAHAR, J., MAHAR, M., KHAN, M. (2006) Comparative Study of Feature Extraction Methods with K-NN for Off-Line Signature Verification. International Conference on Emerging Technologies. http://dx.doi.org/10.1109/icet.2006.335945.
MALYNOVSKA, I. M. (2011) Sklad mikrobnykh uhrupovan korenevoi zony fitotsenoziv riznoho typu. Mikrobiolohiia i biotekhnolohiia, 4: 60–68 (in Ukrainian).
MYKAILO, Y., BOBRYK, N., KRYVTSOVA, M., NYKOLAICHUK, V. (2013) Vlyianye antropohennykh polliutantov na pochvennyi mykrobyotsenoz v uslovyiakh Zakarpatia. Ustoichyvoe razvytye, 11: 130–136 (in Russian).
MYNEEV, V.H., REMPE, E. Kh. (1990) Agrokhimiya, biologiya i ekologiya pochvy. Hosagropromizdat, Moskva (in Russian).
NIKOLAICHUK, V., KRYVTSOVA, M., BOBRYK, N. (2014) Biohennist hruntiv Zakarpattia u zoni vplyvu antropohennoho zabrudnennia. British Journal of Science, Education and Culture, III(5): 68–74 (in Ukrainian).
PATYKA, M.V., KOLODIAZHNYI, O.Yu. (2014) Formuvannia mikrobnoho kompleksu chornozemu typovoho v ahrotsenozi pshenytsi ozymoi za riznykh system zemlerobstva. Visnuk Poltavskoho Derzhavnoi Ahrarnoi Akademii, 2: 26–33 (in Ukrainian).
RODKYN, O.Y. (2011) Proizvodstvo vozobnovljaemogo biotopliva v agrarnyh landshaftah: jekologicheskie i tehnologicheskie aspekty. Minsk, MGJeU im. A.D. Saharova (in Russian).
ROMANCHUK, L.D., BORYSIUK, L.B., SHVAIKA, O.V. (2016) Stiikist ahrotsenozu enerhetychnoi verby na rekultyvovanykh zemliakh Polissia Ukrainy. Visnyk ZhNAEU, 2(56): 37–43.
SZILI-KOVАCS, T., MАTHЕ-GАSPАR, G., MАTHЕ, P., ANTON, A. (2006) Microbial Biomass and Phosphomonoesterase Activity of the Willow (Salix sp.) Rhizosphere in a Heavy Metal Polluted Soil. Agrokémia és Talajtan, 55(1): 241–250. Available at: http://dx.doi.org/10.1556/agrokem.55.2006.1.26
TRUU, M., TRUU, J., HEINSOO, K. (2009) Changes in soil microbial community under willow coppice: The effect of irrigation with secondary-treated municipal wastewater. Ecological Engineering, 35(6): 1011– 1020. DOI:10.1016/j.ecoleng.2008.08.010
WATSON, C., PULFORD, I.D., RIDDELL-BLACK, D. (2003) Development of a Hydroponic Screening Technique to Assess Heavy Metal Resistance in Willow (Salix). International Journal of Phytoremediation, 5(4): 333–349. DOI: 10.1080/15226510309359041
WEYENS, N., SCHELLINGEN, K., BECKERS, B., JANSSEN, J., CEULEMANS, R., VAN DER LELIE D. (2013) Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. Journal of Soils and Sediments, 13: 176–188. DOI: 10.1007/s11368-012-0582-1
XUE, K., VAN NOSTRAND, J.D., VANGRONSVELD, J., WITTERS, N., JANSSEN, JO., KUMPIENE, J., SIEBIELEC, G., GALAZKA, R., GIAGNONI, L., ARENELLA, M., ZHOU, JZ., RENELLA, G. (2015) Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metalpolluted soil. Chemosphere, 138: 469-477.
ZVYAGINTSEV, D.G., ASEEVA, I.V., BABIEVA, I.P., BYZOV, B.A. (1991) Metody pochvennoi mikrobiologii v biokhimii. MGU, Moscow (in Russian).