СHANGES IN THE MORPHOLOGICAL AND ANATOMICAL STRUCTURE OF THE LEAVES SOME TYPES OF LINDEN UNDER THE INFLUENCE OF AEROGENIC POLLUTION

Authors

  • I. BESEGANICH
  • YA. HASYNETS
  • R. KISH

DOI:

https://doi.org/10.32782/1998-6475.2023.54.13-19

Keywords:

genus Tilia, atmospheric pollution, green vegetation, morphological and anatomical characteristics of a leaf, bioindication, Uzhhorod

Abstract

The morphometric parameters and changes in the degree of xeromorphism (thickness of the leaf and cuticle, number of stomata, drooping) of the leaves of two species of linden (Tilia cordata Mill., T. platyphyllos Scop.) in green stands of the city of Uzhhorod from three localities that differ in the degree of anthropogenic load and atmospheric pollution were studied. The area of leaves in T. cordata varies between 29.9–37.3 cm2, in T. platyphyllos it is 10.5% larger – 41.3–46.2 cm2. In T. platyphyllos, the total leaf area was greater in trees growing in the zone of transport and industrial pollution than in trees from the recreation zone. Damage in the form of necrosis and chlorosis was detected on the leaves of both types of linden. In T. cordata, all types of macroscopic leaf changes were detected: chlorosis, yellowing of the edges, interveinal, point and spotted, as well as marginal necrosis. The largest area of necrosis in the studied species was observed in the transport load zone. T. platyphyllos shows less sensitivity to atmospheric pollution compared to T. cordata, significantly fewer leaves with necrosis and chlorosis were found on its trees. According to anatomical studies, the thickness of the cuticle of leaves in T. cordata is 8.75–12.5 microns, in T. platyphyllos – 6.25–8.75 microns. In the zone of industrial and transport pollution, there is a decrease in the thickness of the leaf plate by 5–13%, as well as a decrease in the size of epidermal cells. The number and size of the stomata, as well as their shape, are different in the investigated linden species. The length of the stomata in T. cordata is 22.5–27.5 microns, the width is 15–20 microns. In the transport pollution zones, the stomatal cells of the epidermis of the leaves of the studied species were smaller in size, the number of open pores was also smaller, but the density of stomata per unit area was higher compared to the stomatal cells of the epidermis from the recreation zone. T. cordata reliably responds to atmospheric pollutants, which allows the use of this species for biomonitoring. T. platyphyllos, on the contrary, showed resistance to factors of aerogenic pollution, has a wide adaptive potential of the leaf apparatus, which allows recommending this species for the creation and reconstruction of urban plantations in conditions of increased gas pollution.

References

ADREES, M., IBRAHIM, M., SHAH, A.M., ABBAS, F., SALEEM, F., RIZWAN, M., HINA, S., JABEEN, F. AND ALI, S. (2016) Gaseous pollutants from brick kiln industry decreased the growth. photosynthesis, and yield of wheat (Triticum aestivum L.). Environmental Monitoring and Assessment, 188, 1–11.

BAMBAWALE, O.M. (1986) Evidence of ozone injury to a crop plant in India. Atmospheric Environment, 20, 1501–1503.

BESEGANYCH, I.V., HASYNETS, Ya.S., KISH, R.Ya., SOIMA, A.D. (2020) Derevno-chaharnykovi nasadzhennia mikroraionu «Malyi Halahov» m. Uzhhoroda – istoriia formuvannia ta suchasnyi stan. Scientific Bulletin of Uzhhorod University, Series Biology, 48, 56–71. (in Ukrainian). DOI: 10.24144/1998-6475.2020.48.56-71

BESEGANYCH, I.V., HASYNETS, Ya.S., KISH, R.Ya., SOIMA, A.D., VAKERYCH, M.M. (2020) Parky ta skvery istorychnoho mikroraionu «Malyi Galagov» m. Uzhhoroda. Scientific Bulletin of Uzhhorod University, Series Biology, 49, 7–35. (in Ukrainian). DOI: 10.24144/1998-6475.2020.49.7-35

BOIKO, I.V., BOHOLIUBOV, V.M., VYSHENSKA, I.H., DIDUKH, YA.P., ZAMOSTIAN, V.P., ISAIEV, S.D., KARPENKO, V.I. (2000) Laboratornyi ta poliovyi praktykum z ekolohii. Fitosotsiotsentr, Kyiv. (in Ukrainian).

BRAUN, S., FLUCKIGER, W. (1984) Increased population of the aphis Aphis pomi at a motorway. The effect of drought and deicing salt. Environmental Pollution, 36, 261–270.

CHWIL, S., KOZŁOWSKA-STRAWSKA, J., TKACZYK, P., CHWIL, P., MATRASZEK, R. (2015) Assessment of air pollutants in an urban agglomeration in Poland made by the biomonitoring of trees. Journal of Elementology, 20 (4), 813–826. DOI: 10.5601/ jelem.2015.20.1.742

GIBADULINA, I.I., LARIONOV, M.V., MASLENNIKOVA, N.N. (2022) Anatomical and morphological features of the leaves of Tilia cordata Mill. as an indicator of the adaptive capabilities of the species to the conditions of the urban environment. Conference Series: Earth and Environmental Science, 88, 2.

GRODZKI, W., MCMANUS, M., KNIZEK, M., MESHKOVA, V., MIHALCIUC, V., NOVOTNY, J., TURCANI, M. (2004) Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress. Environmental Pollution, 130, 73–83.

HASYNETS, Ya.S., BESEHANYCH, I.V., KISH, R.Ya., SOIMA, A.D., VAKERYCH, M.M. (2017) Dendroflora skveru pl. Sh. Petefi ta yii suchasnyi stan. Scientific Bulletin of Uzhhorod University, Series Biology, 42, 94–105. (in Ukrainian)

HERBUT, O.V. (2008). Biolohichni osoblyvosti dekoratyvnykh derevnykh porid, yaki vykorystovuiutsia v ozelenenni mista Umani. Naukovyi visnyk Natsionalnoho lisotekhnichnoho universytetu Ukrainy, 18(1), 22–27. (in Ukrainian)

HOMONAI, V.I., KOMAR, A.V., FEDORISHKO, M.I., LOBKO, V.Yu., ZUB, S.A. (2014) Pokaznyky zabrudnennia povitria v m. Uzhhorodi v rizni periody roku. Ekolohichnyi visnyk, 3(84), 19. (in Ukrainian)

ILINSKA, A.P., ANDROSHCHUK, O.F. (1979) Anatomichna budova epidermisu lystkiv Achillea nobilis L. zalezhno vid umov mistsezrostannia roslyn. Ukrainian botanical journal, 36(4), 302–307. (in Ukrainian)

ILINSKA, A.P., SHEVERA, M.V. (2004) Struktura poverkhni lystkiv predstavnykiv rodiv Lepidium L. ta Cardaria Desv. (Brassicaceae). Ukrainian botanical journal, 61(2), 115–124. (in Ukrainian)

JEANJEAN, A .P., BUCCOLIERI, R ., EDDY, J ., MONKS, P.S., LEIGH, R.J. (2017) Air quality affected by trees in real street canyons: The case of Marylebone neighbourhood in central London. Urban For Urban Green, 22, 41-53.

KAPELIUSH, N.V. (2012) Vplyv aerohennoho zabrudnennia na pokaznyky asymiliatsiinoho aparatu derevnykh roslyn mista Zaporizhzhia. Visnyk Zaporizkoho natsionalnoho universytetu, Biolohichni nauky, 3, 111–115. (in Ukrainian)

KARDEL, F., WUYTS, K., KHAVANINZADEH, A.R., WUYTACK, T., DE SMEDT, S., BABANEZHAD, M., SAMSON, R. ( 2013). Comparison of leaf saturation isothermal remanent magnetisation (SIRM) with anatomical, morphological and physiological tree leaf characteristics for assessing urban habitat quality. Environmental Pollution, 183, 96–103.

KHAVANINZADEH, A.R., VEROUSTRAETE, F ., BUYTAERT, J ,A,, DIRCKX, J ., SAMSON, R. (2013) Assessing urban habitat quality using spectral characteristics of Tilia leaves. Environmental Pollution, 178, 7–14.

KHAVANINZADEH, A.R., VEROUSTRAETE, F., BUYTAERT, J.A.N., SAMSON, R. (2014) Leaf injury symptoms of Tilia sp. as an indicator of urban habitat quality. Ecological Indicators, 41, 58–64.

KOLIENKINA, M.S. (2020) Stan lypy dribnolystoi (Tilia cordata Mill.) u zelenykh nasadzhenniakh mista Kharkiv (za danymy vesnianoho obstezhennia). Naukovyi visnyk Natsionalnoho lisotekhnichnoho universytetu Ukrainy, 30, 5, 25–30. (in Ukrainian)

KOSIBA, P. (2008) Variability of morhpometric leaf traits in small-leaved Linden (Tilia cordata Mill.) under the influence of air pollution. Acta Societatis Botanicorum Polonia, 77, 2, 125–127.

LIU, J., CAO, Z., ZOU, S., LIU, H., HAI, X., WANG, S., et al. (2018) An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Science of the Total Environment, 616-617, 417–426.

LOBKO, V.Yu. (2004) U povitri Uzhhoroda «litaie» formaldehid. Pryroda, 2, 3–4. (in Ukrainian)

LYKHOLAT, Yu.V., KUCHMA, V.M., SEMENKO, A.V., ANTONECHKO, N.O. (2002) Zminy anatomichnoi budovy lystkiv osnovnykh dernoutvoriuiuchykh trav v umovakh promyslovoho zabrudnennia. Pytannia bioindykatsii ta ekolohii, 7(1), 3–9. (in Ukrainian)

LYSENKO, M. (2007) Zeleni nasadzhennia v urbanizovanomu seredovyshchi m. Ivano-Frankivska. Visnyk Prykarpatskoho natsionalnoho universytetu im. V. Stefanyka, VII–VIII, 236–241. (in Ukrainian)

MAGE, D., OZOLINS, G., PETERSON, P., WEBSTER, A., ORTHOFER, R., VANDEWEERD, V. AND GWYNNE, M. (1996) Urban air pollution in mega-cities of the world. Atmospheric Environment, 30, 681–686.

MALUCHENKO, I.О., NEPEINA, G.V. (2021) Metodichni vkazivki dlia provedennia laboratornyh robit z biolohii z osnovamy bioekolohii dlia studentiv spetsialnosti «101» Ekolohia». Vydavnytstvo ChNU, Mykolaiiv. (in Ukrainian)

MISHRA, S., PANDEY, R.S. (2011) Effects of air pollution on plants in urban area: a case study of Ghaziabad (U.P) India. International Journal of Technical and Non-Technical Research, 2(5), 262–266.

OLEKSIICHENKO, N.О., LIKHANOV, А.F. (2016) Variabelnist morfolohichnykh i biokhimichnykh oznak lystkiv roslyn rodu Tilia L. v urboseredovyshchi. Naukovi pratsi Lisivnychoi akademii nauk Ukrainy: zbirnyk naukovykh prats, 14, 23–30. (in Ukrainian)

PIKHALO, O.V. (2010) Taksonomichnyi analiz dendroflory istorychnoi chastyny m. Kyieva. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy, 147, 56–63. (in Ukrainian)

PONOMARIOVA, O.A. (2013) Poshyrennia predstavnykiv rodu Tilia L. u nasadzhenniakh m. Dnipropetrovska. Naukovyi visnyk Natsionalnoho lisotekhnichnoho universytetu Ukrainy, 23(8), 56–61. (in Ukrainian)

PONOMARIOVA, O.A. (2013) Zminy anatomichnoi budovy lystkiv derev rodu Tilia L. yak pokaznyk adaptatsii do riznykh do riznykh umov zrostannia. Pytannia bioindykatsii ta ekolohii, 18(2), 105–120. (in Ukrainian)

RIBAS, A., PENUELAS, J. (2003) Biomonitoring of tropospheric Ozone phytotoxicity in rural Catalonia. Atmospheric Environment, 37, 63-71.

RUSSO, A., CHAN, W.T., CIRELLA, G.T. (2021) Estimating Air Pollution Removal and Monetary Value for Urban Green Infrastructure Strategies Using Web-Based Applications. Land, 10(8), 788.

SÆBØ, A., POPEK, R., NAWROT, B., HANSLIN, H.M., GAWRONSKA, H., GAWRONSKI, S.W. (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment, 427–428, 347–354.

SGRIGNA, G., BALDACCHINI, C., DREVECK, S., CHENG, Z., CALFAPIETRA, C. (2020) Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Science of The Total Environment, 718, 137310.

SKELLY, J.M., INNES, J.L., SAVAGE, J.E., SNYDER, K.R., VANDERHEYDEN, D., ZHANG, J., SANZ, M.J. (1999) Observation and confirmation of foliar ozone symptoms of native plant species of Switzerland and Southern Spain. Water, Air and Soil Pollution, 116, 227–234.

SMITH, G., COULSTON, J., JEPSEN, E., PRICHARD, T. (2003) A national ozone bio-monitoring program results from field surveys of ozone sensitive plants in Northeastern forests (1994–2000). Environmental Monitoring and Assessment, 87, 271–291.

TEREKHINA, N. (2020) Green spaces as indicator of air quality and mechanism for city’s environment stabilization in the Baltic region. IOP Conference Series: Earth and Environmental Science, 578, 012056.

TSARENKO, O.M., VAKULENKO, T.B., DOROSHENKO, O.K., KARPENKO, N.I. (2016) Morfolohichni osoblyvosti lystkiv vydiv rodu Tilia L. (sektsiia Anastraea Engl.). Introduktsiia roslyn, 3, 38–48. (in Ukrainian)

VIEIRA, J., MATOS, P., MEXIA, T., SILVA, P., LOPES, N., FREITAS, C. et al. (2018) Green spaces are not all the same for the provision of air prification and climate regulation services: The case of urban parks. Environmental Research, 160, 306-313.

VELIĈKOVIĆ, M. (2010) Reduced developmental stability in Tilia cordata leaves: effects of disturbed environment. Periodicum biologorum, 112 (3), 273–281.

WEINSTEIN, L.H., DAVISON, A.W. (2003) Native plant species suitable as bioindicators and bio-monitors for airborne fluoride. Environmental Pollution, 125, 3–11.

WELFARE, K., YEO, A.R.J., TIMOTHY, F. (2002) Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environmental Pollution, 120, 397–403.

Published

2023-12-14