Modern approaches to physical rehabilitation of patients after stroke: analysis of effective methods of movement therapy

Authors

DOI:

https://doi.org/10.32782/2077-6594/2025.3/23

Keywords:

neurorehabilitation, kinesiotherapy, neuroplasticity, functional training, CIMT therapy, robotic rehabilitation, functional electrical stimulation (FES), virtual reality (VR), kinesiotaping, hydrokinesiotherapy, aerobic training

Abstract

The purpose of this review is to analyse current approaches to physical rehabilitation of patients after stroke, assess their effectiveness based on recent clinical trials and identify promising areas for the development of neurorehabilitation, as well as to summarise and systematise the available evidence on kinesiotherapy in post-stroke rehabilitation.Materials and methods. The study materials included systematic reviews, meta-analyses and original clinical trials on various aspects of physical rehabilitation for stroke patients. The main focus was on the following methods: – Functional training: exercises that mimic everyday movements. – Forced movement therapy (CIMT): Restricting the healthy limb to stimulate the affected limb. – Robotic rehabilitation: the use of exoskeletons and robotic devices. – Hydrokinesiotherapy and aerobic training: physical exercises in water and cardio exercise. – Functional electrical stimulation (FES): the use of electrical impulses to stimulate muscles. – Virtual reality (VR): interactive systems with biofeedback. – Kinesiotaping: the use of special elastic patches. – Traditional methods: proprioceptive neuromuscular stimulation (PNF) and the Bobath concept.The research methods consisted of a systematic review and analysis of scientific literature. The effectiveness of each method was assessed based on published data, the results were compared, and advantages and limitations were identified. Mechanisms of action were analysed, including stimulation of neuroplasticity, normalisation of muscle tone and activation of cortical-spinal pathways.The scoring scales used (e.g., Fugl-Meyer, Barthel, Rankin, NIHSS) and methodological features of the included studies were also considered.Results. A literature review has confirmed that kinesiotherapy is a highly effective tool in restoring motor function after stroke, especially when integrated with modern technologies. – Functional training increases motor recovery by 35–40% compared to passive exercises. – CIMT therapy increases the range of motion in a paretic limb by 30–40%, and its combination with transcranial magnetic stimulation increases efficiency by 37%. – Robotic rehabilitation significantly improves the range of motion, walking speed and functional performance, ensuring high accuracy and repeatability of movements. – Hydrokinesiotherapy and aerobic training improve physical endurance, cognitive function and reduce the risk of recurrent stroke. – Functional electrical stimulation (FES) effectively reduces spasticity and improves muscle activity, with personalised approaches allowing for a high degree of compliance with physiological movement patterns. – Virtual reality (VR) shows 31% better results in restoring upper limb function, increasing patient motivation and improving coordination.At the same time, a number of limitations have been identified, including the small sample size and short duration of most studies, the lack of standardised kinesiotherapy protocols, uneven use of assessment scales, and insufficient consideration of individual patient characteristics. The high cost and limited availability of some innovative technologies are also obstacles.Conclusions. The evidence base confirms that kinesiotherapy, especially in combination with modern technologies, provides significant functional improvement in stroke patients in both the acute and chronic periods. Its benefits include individualisation, sensorimotor stimulation and active patient participation, which helps to activate neuroplastic processes and improve quality of life.A modern rehabilitation strategy should be based on an individualised approach that combines early mobilisation, intensive motor training, aerobic exercise, CIMT and innovative technologies (VR).Prospects for further research include the development and evaluation of personalised rehabilitation programmes using artificial intelligence, standardisation of kinesiotherapy protocols, long-term studies to assess cognitive and psycho-emotional effects, and in-depth integration of new technologies with an assessment of their economic feasibility. Comparative studies with alternative methods and an in-depth study of neuroplasticity mechanisms are needed to develop more effective strategies.

References

Feigin VL, Owolabi MO. World Stroke Organization–Lancet Neurology Commission Stroke Collaboration Group. Pragmatic solutions to reduce the global burden of stroke: A World Stroke Organization-Lancet Neurology Commission. Lancet Neurol. 2023 Dec;22(12):1160–206. doi:10.1016/S1474-4422(23)00277-6

Малешко Г, Миронюк І, Слабкий Г, Брич В. Функціонально-організаційні моделі реабілітаційної допомоги особам, що перенесли мозковий інсульт на регіональному рівні. Україна. Здоров’я нації [інтернет]. 03, Травень 2023 [цит. за 18, Липень 2025];(2):87–6. Доступно на: https://journals.uzhnu.uz.ua/index.php/health/article/view/462

Рубан Л, Місюра В. Фізична терапія постінсультних хворих в резидуальному періоді. Науковий часопис Українського державного університету імені Михайла Драгоманова Серія 15. 2021;(3(133)):112–6. https://doi.org/10.31392/NPU-nc.series15.2021.3(133).22.

Arya KN, Pandian S, Verma R, Garg RK. Movement therapy induced neural reorganization and motor recovery in stroke: a review. J Bodyw Mov Ther. 2011 Oct; 15(4):528–37. doi: 10.1016/j.jbmt.2011.01.023

Alt Murphy M, Munoz-Novoa M, Heremans C, Branscheidt M, Cabanas-Valdés R, Engelter ST, et al. European Stroke Organisation (ESO) guideline on motor rehabilitation. Eur Stroke J. 2025;23969873251338142. doi: 0.1177/23969873251338142

Todhunter-Brown A, Sellers CE, Baer GD, Choo PL, Cowie J, Cheyne JD, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev. 2025 Feb 17;2(2):CD001920. doi: 10.1002/14651858.CD001920.pub4

Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011 May 14;377(9778):1693–702. doi: 10.1016/S0140-6736(11)60325-5

French B, Thomas LH, Coupe J, McMahon NE, Connell L, Harrison J, et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev. 2016 Nov 11;11(11):CD006073. doi: 10.1002/14651858.CD006073.pub3

Reddy RS, Gular K, Dixit S, Kandakurti PK, Tedla JS, Gautam AP, Sangadala DR. Impact of Constraint-Induced Movement Therapy (CIMT) on Functional Ambulation in Stroke Patients-A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2022 Oct 6;19(19):12809. doi: 10.3390/ijerph191912809

Raji A, Gopaul U, Babineau J, Popovic MR, Marquez-Chin C. Industrial-grade collaborative robots for motor rehabilitation after stroke and spinal cord injury: a systematic narrative review. Biomed Eng Online. 2025 Apr 22;24(1):50. doi: 10.1186/s12938-025-01362-z

Huber J, Kaczmarek K, Leszczyńska K, Daroszewski P. Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up. Int J Environ Res Public Health. 2022 Jan 14;19(2):964. doi: 10.3390/ijerph19020964

Chen L, Zhu H, Wang J, Lu R, Tian J, Wu B, Li J. Virtual Reality-Based Robotic Training for Lower Limb Rehabilitation in Stroke Patients with Hemiplegia: A pilot study. Aging Health Res. 2025;100233. doi: 10.1016/ j.ahr.2025.100233

Wang Y, Li X, Sun C, Xu R. Effectiveness of kinesiology taping on the functions of upper limbs in patients with stroke: a meta-analysis of randomized trial. Neurol Sci. 2022 Jul;43(7):4145–56. doi: 10.1007/s10072-022-06010-1

Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014 Feb 24;9(2):e87987. doi: 10.1371/journal.pone.0087987

Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017 Jul;12(5):451–61. doi: 10.1177/1747493017711813

Barghi A, Allendorfer JB, Taub E, Womble B, Hicks JM, Uswatte G, Szaflarski JP, Mark VW. Phase II Randomized Controlled Trial of Constraint-Induced Movement Therapy in Multiple Sclerosis. Part 2: Effect on White Matter Integrity. Neurorehabilitation and neural repair. 2018;32(3):233–41. https://doi.org/ 10.1177/1545968317753073

Marklund I, Fure B, Klässbo M, Liv P, Stålnacke BM, Hu X. Post-stroke health-related quality of life following lower-extremity constraint-induced movement therapy – An observational survey study. PLoS One. 2025 May 2;20(5):e0323290. doi: 10.1371/journal.pone.0323290

Abdullahi A, Wong TW, Van Criekinge T, Ng SS. Combination of noninvasive brain stimulation and constraint- induced movement therapy in patients with stroke: a systematic review and meta-analysis. Expert Rev Neurother. 2023 Feb;23(2):187–203. doi: 10.1080/14737175.2023.2177154

Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2018 Sep 1;9(9):CD006876. doi: 10.1002/14651858.CD006876.pub5

Scibilia A, Pedrocchi N, Caimmi M. Trajectory Prediction in Upper-Limb Robotic Rehabilitation and its Applicability to Post-Stroke Patients: A Preliminary Analysis. 2025 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). IEEE; 2025 Apr. p. 1–6.

Khan AS, Patrick SK, Roy FD, Gorassini MA, Yang JF. Training-Specific Neural Plasticity in Spinal Reflexes after Incomplete Spinal Cord Injury. Neural plasticity, 2016, 6718763. https://doi.org/10.1155/2016/6718763

Marzolini S, Robertson AD, Oh P, Brooks D. Aerobic Training and Mobilization Early Post-stroke: Cautions and Considerations. Front Neurol. 2019 Nov 15;10:1187. doi: 10.3389/fneur.2019.01187

Gu X, Zeng M, Cui Y, Fu J, Li Y, Yao Y, et al. Aquatic strength training improves postural stability and walking function in stroke patients. Physiother Theory Pract. 2023 Aug 2;39(8):1626–35. doi:10.1080/09593985.2022.2049939

Belfiore P, Miele A, Gallè F, Liguori G. Adapted physical activity and stroke: a systematic review. J Sports Med Phys Fitness. 2018 Dec;58(12):1867–75. doi: 10.23736/S0022-4707.17.07749-0

Guo X, Lau KY, Bai M, Liu R, He B, Xie JJ, Cheung VC. Personalized Synergy-based Functional Electrical Stimulation Improves Lower Limb Motor Functions of Chronic Stroke Survivors by Restoring Gait Control Modules. medRxiv. 2025 Apr 30;2025.04.30.25326772. doi: 10.1101/2025.04.30.25326772

Aoki K, Uchibori K, Watabe T, Yoshikawa A, Kawate N. The Effectiveness of Combined Mirror Therapy and Contralateral Controlled Functional Electrical Stimulation Therapy in a Stroke Patient With Upper Limb Motor Paralysis: A Case Report. Cureus. 2025 May;17(5).

Deng P, Zhao Z, Zhang S, Xiao T, Li Y. Effect of kinesio taping on hemiplegic shoulder pain: A systematic review and meta-analysis of randomized controlled trials. Clin Rehabil. 2021 Mar;35(3):317–31. doi: 10.1177/0269215520964950

Song JO, Kwon YD, Jeon HJ, Yang BI. Effect of Bobath Concept-Based Rehabilitation on Gait and Balance in a Hemiplegic Patient: A Case Study. Available from: https://kiss.kstudy.com/Detail/Ar?key=4164661

Cramer SC, Riley JD. Neuroplasticity and brain repair after stroke. Current opinion in neurology. 2008;21(1):76–82. https://doi.org/10.1097/WCO.0b013e3282f36cb6

Alsubiheen AM, Choi W, Yu W, Lee H. The Effect of Task-Oriented Activities Training on Upper-Limb Function, Daily Activities, and Quality of Life in Chronic Stroke Patients: A Randomized Controlled Trial. International journal of environmental research and public health. 2022;19(21):14125. https://doi.org/10.3390/ijerph192114125

Torrisi M, Maggio MG, De Cola MC, Zichittella C, Carmela C, Porcari B, la Rosa G, De Luca R, Naro A, Calabrò RS. Beyond motor recovery after stroke: The role of hand robotic rehabilitation plus virtual reality in improving cognitive function. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2021;92:11–16. https://doi.org/10.1016/j.jocn.2021.07.053

Dantas MTAP, Fernani DCGL, Silva TDD, Assis ISA, Carvalho AC, Silva SB, Abreu LC, Barbieri FA, Monteiro CBM. Gait Training with Functional Electrical Stimulation Improves Mobility in People Post-Stroke. International journal of environmental research and public health. 2023;20(9):5728. https://doi.org/10.3390/ijerph20095728

Penna LG, Pinheiro JP, Ramalho SHR, Ribeiro CF. Effects of aerobic physical exercise on neuroplasticity after stroke: systematic review. Arquivos de neuro-psiquiatria. 2021;79(9):832–43. https://doi.org/10.1590/0004-282X-ANP-2020-0551

Vestito L, Ferraro F, Iaconi G, Genesio G, Bandini F, Mori L, Trompetto C, Dellepiane S. STORMS: A Pilot Feasibility Study for Occupational TeleRehabilitation in Multiple Sclerosis. Sensors (Basel, Switzerland). 2024;24(19):6470. https://doi.org/10.3390/s24196470

Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. International journal of molecular sciences. 2020;21(16):5895. https://doi.org/10.3390/ijms21165895

Шепель АІ, Горошко ВІ. Використання інноваційних методик віртуальної реальності у фізичній терапії пацієнтів із травмами опорно-рухового апарату. Rehabilitation and Recreation. 2023;17:150–58. https://doi.org/10.32782/2522-1795.2023.17.18

Published

2025-09-25

How to Cite

Байляк, М., Лапковський, Е., Фурман, Ю., Левченко, В., & Левчук, О. (2025). Modern approaches to physical rehabilitation of patients after stroke: analysis of effective methods of movement therapy. Ukraine. Nation’s Health, (3), 204–213. https://doi.org/10.32782/2077-6594/2025.3/23

Issue

Section

Physical therapy and rehabilitation